
P r i m e s C U s e r ' s G u / d e
Release 73.0-23.0

DOC7534-4LA

C User's Guide

Fourth Edition

Marilyn Hammond

This guide documents the use of the PRIMOS C compiler
and libraries as implemented on the PRIMOS operating
system at Translator Family Release T3.0-23.0.

Prime Computer, Inc., Prime Park, Natick, MA 01760

The information in this document is subject to change without notice and should not be
construed as a commitment by Prime Computer, Inc. Prime Computer, Inc., assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

Copyright © 1990 by Prime Computer, Inc. All rights reserved.

PRIME, PRIME, PRIMOS, and the Prime logo are registered trademarks of Prime
Computer, Inc. 50 Series, 400, 750, 850, 2250, 2350, 2450, 2455, 2550, 2655, 2755, 2850,
2950, 4050, 4150, 4450, 6150, 6350, 6450, 6550, 6650, 9650, 9655, 9750, 9755, 9950, 9955,
9955II, Prime INFORMATION CONNECTION, DISCOVER, INFO/BASIC, MIDAS, MIDASPLUS,
PERFORM, PERFORMER, PRIFORMA, Prime INFORMATION, PRIME/SNA, INFORM, PRISAM,
PRIMAN, PRIMELINK, PRIMIX, PRIMEWORD, PRIMENET, PRIMEWAY, PRODUCER,
PRIME TIMER, RINGNET, SIMPLE, Prime INFORMATION/pc, PT25, PT45, PT65, PT200,
PT250, and PST 100 are trademarks of Prime Computer, Inc.

UNIX is a registered trademark of AT&T.

Printing History
First Edition (DOC7534-193) June 1985
Second Edition (DOC7534-2LA) January 1986
Third Edition (DOC7534-3LA) January 1988
Fourth Edition (DOC7534-4LA) June 1990

Credits

Editorial: Norma Kellstedt and Judy Goodman
Engineering Support: Wendy Merrill
Illustration: Carol Smith
Production: Judy Gordon

How to Order Technical Documents

To order copies of documents, or to obtain a catalog and price list:

United States Customers International

Call Prime Telemarketing, Contact your local Prime
toll free, at 1-800-343-2533, subsidiary or distributor.
Monday through Thursday,
8:30 a.m. to 8:00 p.m. and
Friday, 8:30 a.m. to 6:00 p.m. (EST).

PRIME SERVICE5"

Prime provides the following toll-free number for customers in the United States needing
service:

1-800-800-PRIME

For other locations, contact your Prime representative.

Surveys and Correspondence
Please comment on this manual using the Reader Response Form provided in the back of
this book. Address any additional comments on this or other Prime documents to:

Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

Reading Path for PRIMOS Documentation

Book Level

PRIMOS
User's
Guide

Introduction
for all Users

\r

CPL
User's
Guide

PRIMOS
Commands
Reference
Guide

Reference
for all Users

\ '

Subroutines
Reference
1 - V

Language
Reference
Guides Reference fo

Programmer*
| W

,\
Source
Level
Debugger
User's
Guide

SEG and
LOAD
Reference
Guide

Programmer'sGuide to
BIND and
EPFs

Programmer
Tools

i ' ' ' i r

Advanced
Prog'ammef'sGuide 1:
BIND and
EPFs

Advanced
Programmer'sGuide III:
Command
Environment

Advanced
Programmer'sGuide II:
File System

Advanced
Programmer'sGuide:
Appendicesand Master
Index

1r
Advanced
Programmer
iriToriTiaiion

System
Architecture
Reference
Guide

Instruction
Sets Guide Assembly

Language
Programmer'sGuide

LpaihD7534.4lA

CONTENTS

ABOUT THIS BOOK

1 OVERVIEW OF PRIMOS C
PRIMOS C
Standardization
System Resources Supporting C

2 COMPILING PROGRAMS IN C
Standard Include Files
Include Files and the Search Rules Facility
Using the C Compiler

3 LINKING C PROGRAMS
Runtime Libraries
Guidelines for Linking C Programs
Creating Shared C Programs

VII

1-1
1 -2
1-4

2-1
2 - 2
2 - 4

3 - 2
3 - 4
3 - 1 0

4 USING THE C LIBRARY
I n c l u d e F i l e s 4 - 1
Dictionary of C Library Functions and Macros 4-3

5 INTERFACING TO OTHER LANGUAGES
Differences Between C and Other Languages 5-2
Calling Other Language Routines From C 5-7

Programs
Call ing 64V-mode Routines From Other 5-12

Languages
Calling 32IX-mode C From Other Languages 5-15
Calling 64V-mode C From 32IX-mode C 5-17
Calling 32IX-mode C From 64V-mode C 5-18
Function Return Types From C and Other 5-19

Language Routines
Making Your Code Correct for Both Modes 5-21
Using the PRIMOS Condition Mechanism From C5-21
C o m m o n B l o c k s 5 - 2 3
C a l l i n g M I D A S P L U S F r o m C 5 - 2 6

6 ADVANCED TOPICS
C S t a c k F r a m e F o r m a t s 6 - 1
S h o r t c a l l s 6 - 6

7 PORTABILITY CONSIDERATIONS
Features of PRIMOS C
PRIMOS C Library Functions

7-1
7 - 7

8 USING ANSI C
Writing and Compiling Standard-conforming C 8-2

Programs
Linking Standard-conforming C Programs 8-5
Running Standard-conforming C Programs 8-6
Converting Older PRIMOS C Programs to ANSI 8-8

C
A N S I C L i b r a r y F u n c t i o n s 8 - 1 5

APPENDICES

A EXTENSIONS TO THE C LANGUAGE A-1
E n u m e r a t i o n D a t a T y p e A - 1
V o i d D a t a T y p e A - 2
T h e l o n g d o u b l e D a t a T y p e A - 3
f o r t r a n S t o r a g e C l a s s A - 3
U n a r y P l u s O p e r a t o r A - 4
I d e n t i fi e r N a m e s A - 4
P r e p r o c e s s o r C o m m a n d s A - 4
A u t o m a t i c S t r i n g C o n c a t e n a t i o n A - 7

B D E B U G G I N G C P R O G R A M S B - 1
U s i n g D B G B - 2
D B G a n d C L a n g u a g e C o n s t r u c t s B - 4
S a m p l e D B G S e s s i o n B - 6

C OPERATOR PRECEDENCE AND ASSOCIATIVITY C-1

D SUMMARY OF C LIBRARY FUNCTIONS D-1

E C D A T A F O R M A T S E - 1
D a t a F o r m a t s E - 1

F THE PRIME EXTENDED CHARACTER SET F-1
S p e c i f y i n g P r i m e E C S C h a r a c t e r s F - 2
Special Meanings of Prime ECS Characters F-2
C P r o g r a m m i n g C o n s i d e r a t i o n s F - 3
Pr ime Extended Charac ter Set Tab le F-4

G G L O S S A R Y G - 1

I N D E X I n d e x - 1

V I

ABOUT THIS BOOK

The C User's Guide documents the C compiler of the PRIMOS® operating system and
provides all the information necessary to compile, load, execute, and debug C programs
under the PRIMOS operating system on 50 Series™ machines.

The PRIMIX™ operating system is a separately priced operating system based on AT&T
UNIX® System V and coresident with PRIMOS on the 50 Series. Some of the topics
discussed in this book are also relevant to PRIMIX users. These topics include compiler
options and interfacing to other Prime® languages. However, the library functions described
in this book are different from those supplied with PRIMIX. If you are developing
programs under PRIMIX, consult the PRIMIX books listed below under Associated Documents.

Throughout this book, references to PRIMOS C refer to the manner in which the C
programming language is implemented under PRIMOS on 50 Series computers.

This guide is not a tutorial on the C programming language. Instead, this book is intended
for experienced programmers who have a knowledge of C but who may not be familiar
with 50 Series computers. Those users who are unfamiliar with the C programming
language should obtain a copy of one of the many commercially available manuals
describing the language.

NEW FEATURES OF PRIMOS C
At Release T3.0-23.0, PRIMOS C has added the following new features:

• ANSI standard compliance. This release of the compiler makes the compiler consistent
with the ANSI C standard, X3.159-1989, when the -ANSI compiler option is used.
New standard-conforming header files and function libraries are also provided.
Chapter 8 explains how to compile, link, and run ANSI C programs using PRIMOS C.

• Quadruple precision floating point support. Quadruple precision floating point
computations, using the data type long double, are now supported in non-ANSI mode
with the -QUADFLOATING and -QUADCONSTANTS options. (ANSI mode supports
the long double datatype.) See Chapter 2 for information about these options.

VII

C User's Guide

• New compiler options. The following new compiler options have been added to
PRIMOS C. All are available only in 32IX mode. They are

-ANSI, -NOANSI
-CLUSTER, -NO_CLUSTER
-DISALLOWEXPANSION
-EXTRACTPROTOTYPES
-FORCEEXPANSION
-HARDWAREROUNDING, -NOHARDWAREROUNDING
-HOLEYSTRUCTURES, -NO_HOLEYSTRUCTURES
-INTEGEREXCEPTIONS, -NO_INTEGEREXCEPTIONS
-PACKBYTES, -NO_PACKBYTES
-PREPROCESSONLY
-QUADCONSTANTS, -NO_QUADCONSTANTS
-QUADFLOATING, -NO_QUADFLOATING
-SEGMENTSPANCHECKING, -NO_SEGMENTSPANCHECKING
-STRICTCOMPLIANCE, -NOSTR1CTCOMPLIANCE

See Chapter 2 for more information about these options.

• %p format for scanf(). The %p format specification, previously available only with
printf(), inputs the address of a pointer in the usual Prime format (segment, ring,
word number). See the discussion of scanf() in Chapter 4.

The following features were first available at Release T2.0-22.1.

• Additional Prime extensions. These are the #assert, #display, and #elif preprocessor
commands, as well as the defined unary expression. The handling of ^include
commands now allows the use of preprocessor tokens. Automatic string concatenation is
also supported. See Appendix A for information about these commands.

• Two compiler options: -SPEAK and -STANDARDINTRINSICS. See Chapter 2.

• Two library routines: assert() and signaK). See Chapter 4.

Four additional features were first available at Release Tl.3-21.0.

• system() library function. Executes its argument as a PRIMOS command line. See
Chapter 4.

• Nested #include files. The limit on the levels of nested insert files increased from 9
to 20. See Chapter 7.

• Formal parameters to #define macros. The maximum number of formal parameters to
#define macros increased from 16 to 128. See Chapter 7.

• STRING.H.INS.CC include file. This file is identical to STRINGS.H.INS.CC. Later
revisions of the C compiler will no longer support STRINGS.H.INS.CC. See Chapter 4.

VIII

ABOUT THIS BOOK

ORGANIZATION OF THIS BOOK
This guide contains eight chapters and seven appendices, as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Overview of PRIMOS C. Introduces PRIMOS C, including extensions to the
language and 50 Series system resources supporting the C language.

Compiling Programs in C. Provides instructions for invoking and using the
C compiler. This chapter also contains a description of compiler options.

Linking C Programs. Provides information on loading and executing C
programs with the BIND and SEG loaders.

Using the C Library. Lists and describes the non-ANSI C library
functions contained in the CCLIB and C_LIB runtime libraries, and the
preprocessor macros defined in the supplied include files.

Interfacing to Other Languages. Describes how C can be used to interface
to other 50 Series languages.

Advanced Topics. Contains information on advanced, system-related topics.

Portability Considerations. Describes characteristics of 50 Series machines
that you should consider when you port C applications to and from the
50 Series.

Using ANSI C. Provides an overview of ANSI C. Explains how to
compile, link, and run C programs that conform to the ANSI C standard.
Describes the ANSI C library functions contained in C_LIB.

Extensions to the C Language. Describes the extensions to the C language
that are available on the 50 Series.

Debugging C Programs. Introduces the Source Level Debugger.

Operator Precedence and Associativity,
order of evaluation.

Lists the C operators and their

Summary of C Library Functions. Presents a summary of the non-ANSI
C library functions by action performed.

C Data Formats. Presents the data formats used by the C language on
the 50 Series.

The Prime Extended Character Set. Contains the ASCII reference tables
and the mnemonics for character constants and string constants.

Glossary. Explains concepts and conventions basic to 50 Series computers
and the PRIMOS operating system.

IX

C User's Guide

ASSOCIATED DOCUMENTS
Refer to the guides listed below when using the PRIMOS C compiler. The suggested
audience and reading sequence for many of these books are shown in the figure entitled
Reading Path for PRIMOS Documentation, opposite the table of contents for this book.

To find out how to order these books, consult the Guide to Prime User Documents.

• Advanced Programmer's Guide: Appendices and Master Index (DOC10066-4LA)

• Advanced Programmer's Guide I: BIND and EPFs {DOC 10055-2LA)

• Advanced Programmer's Guide II: File System (DOC 10056-3LA)

• Advanced Programmer's Guide III: Command Environment (DOC 10057-2LA)

• Assembly Language Programmers Guide (DOC3059-3LA)

• CPL User's Guide (DOC4302-3LA)

• EMACS Primer (IDR6107)

• EMACS Reference Guide (DOC5026-2LA)

• Instruction Sets Guide (DOC9474-3LA)

• MIDASPLUS User's Guide (DOC9244-2LA)

• New User's Guide to EDITOR and RUNOFF (FDR3104-101B)

• PRIMOS User's Guide (DOC4130-5LA)

• PRIMIX User's Guide (MAN9502-1LA and UPM9502-11A)

• PRIMIX Programmer's Guide (MAN9503-2LA)

• Programmer's Guide to BIND and EPFs (DOC8691-1LA, UPD8691-11A, and
UPD8691-12A)

• SEG and LOAD Reference Guide (DOC3524-192L)

• Source Level Debugger User's Guide (DOC4033-193L, UPD4033-21A, and
UPD4033-22A)

• Subroutines Reference I: Using Subroutines (DOC10080-2LA and UPD10080-21 A)

• Subroutines Reference II: File System (DOC 10081-2LA)

• Subroutines Reference III: Operating System (DOC 10082-2LA)

• Subroutines Reference IV: Libraries and I/O (DOC10083-2LA)

• Subroutines Reference V: Event Synchronization (DOC 10213-1 LA and
UPD10213-11A)

• System Architecture Reference Guide (DOC9473-3LA)

• Using PRIMIX on the 50 Series (DOC9709-3LA)

ABOUT THIS BOOK

ACKNOWLEDGEMENTS
The C compiler described in this book was designed and developed by David A. Kosower
and Garth Conboy of Pacer Software Inc., a La Jolla, California corporation with technical
offices in Westborough, Massachusetts.

PRIME DOCUMENTATION CONVENTIONS
The following conventions may be used throughout this document,
table illustrate the uses of these conventions.

The examples in the

Convention Explanation

UPPERCASE In command formats, words in upper
case bold indicate the names of com
mands, options, statements, and
keywords. Enter them in either upper
case or lowercase.

italic In command formats, words in lower
case bold italic indicate variables for
which you must substitute a suitable
value. In text and in messages, vari
ables are in non-bold lowercase italic.

Abbreviations If a command or option has an ab-
in format breviation, the abbreviation is placed
statements immediately below the full form.

Brackets Brackets enclose a list of one or more
[] optional items. Choose none, one, or

several of these items.

Example

SLIST

LOGIN user-id

Supply a value for
x between 1 and 10.

SET_QUOTA
SQ

[iLD I "BRIEF1^U ' -SIZE J

Braces
{}

Braces within
brackets
[{)]

Parentheseso
Underscore
in examples

Braces enclose a list of items. Choose
one and only one of these items.

Braces within brackets enclose a list of
items. Choose either none or only one
of these items; do not choose more than
one.

In command or statement formats, you
must enter parentheses exactly as
shown.

In examples, user input is underscored
but system prompts and output are not.

CLOSE {2£-}

BIND
{pathname 1 ~|options j J

DIM array (row, col)

OK, RESUME MY.PROG
This is the output
of MY_PROG.CPL
OK,

XI

C User's Guide

Convention Explanation

Ellipsis An ellipsis indicates that you have the
option of entering several items of the
same kind on the command line.

Hyphen Wherever a hyphen appears as the first
character of an option, it is a required
part of that option.

Subscript A subscript after a number indicates
that the number is not in base 10.
For example, a subscript 8 is used for
octal numbers.

Key symbol In examples and text, the name of a
key enclosed by a rectangle indicates
that you press that key.

Example

SHUTDN pdev-1

SPOOL -LIST

200,

PreSS I Return)

XII

OVERVIEW OF PRIMOS C

This chapter introduces PRIMOS C. The first section describes the implementation of C
under PRIMOS and PRIMIX and the characteristics of the C compiler. The second section
discusses C language standardization, executable code compatibility within the 50 Series line,
and source code compatibility with other C implementations. The last section briefly
describes the system resources supporting C language development.

PRIMOS C
The C programming language is a general-purpose language that can be used for a wide
variety of applications. Although the C language is widely associated with the UNIX
operating systems, it is not dependent on any particular operating system or on any
particular hardware architecture.

PRIMOS C is a full implementation of the C programming language. PRIMOS C supports
two versions of C:

• The C language as defined in 1978 by Brian W. Kernighan and Dennis M. Ritchie in
The C Programming Language (Englewood Cliffs, New Jersey: Prentice-Hall, 1978).

• The new ANSI C standard, X3.159-1989.

PRIMOS C provides modern flow control and data structures in addition to a full
complement of operators and data types. Other features of PRIMOS C are separate
compilation, data sharing, and data initialization.

Prime has also added several extensions to the C language so that it more closely matches
the operating environment found in PRIMOS, the proprietary operating system on 50 Series
machines. These extensions are listed later in this chapter.

1-1

C User's Guide

Use of PRIMOS C Under PRIMIX
PRIMIX is a separately-priced operating system based on AT&T UNIX System V and
coresident with PRIMOS on the 50 Series. PRIMIX uses the same C compiler as PRIMOS.
However, the command syntax and library functions described in this book are different
from those available under PRIMIX. PRIMIX programmers may wish to consult this book
for information on compiler options, interfacing to other 50 Series languages, and various
advanced topics. For information about PRIMIX commands and about the C language
libraries supplied with PRIMIX, consult the PRIMIX references listed in the preface to this
book.

The C Compiler
The PRIMOS C compiler generates object code in both 32IX and 64V addressing modes,
which allows access to 512 megabytes of virtual address space on 50 Series machines.
When used in 32IX mode the compiler is fully optimized to take advantage of the new C-
oriented architecture changes and enhancements to 32IX mode.

The C compiler is fully compatible with the BIND and SEG loaders, the Symbolic
Debuggers (VPSD for 64V mode and IPSD for 321 and 32IX modes), and the Source Level
Debugger (DBG).

Application programs written in C can access common data blocks. The data blocks can be
defined either by C routines or by routines written in other languages. C can also access
data that span segment boundaries, with some restrictions (see Chapter 7). Subroutines
written in other languages, as well as PRIMOS system subroutines, can call or be called by
C programs and subroutines with full argument transfer where data types permit.

STANDARDIZATION
PRIMOS C provides compile-time and runtime support for the ANSI C standard,
X3.159-1989, which is also documented in the second edition of Kernighan and Ritchie's The
C Programming Language. Chapter 8 provides information about compiling, linking, and
running standard-conforming C programs. PRIMOS C continues to support the 1978 version
of the C language. Use the first edition of The C Programming Language as a reference
guide in developing non-ANSI C programs.

At the source level, non-ANSI PRIMOS C is reasonably compatible with the C compilers
running under the newest versions of the UNIX operating systems from AT&T and from
the University of California at Berkeley. In addition, the command line option
-COMPATIBILITY causes the compiler to accept code written for the older AT&T UNIX
Version 6. Other portability issues are discussed in Chapter 7.

1 -2

Overview of PRIMOS C

Runtime Libraries
PRIMOS C provides runtime libraries and header files that fully comply with ANSI C
requirements, as well as libraries and header files that support the 1978 C language. The
non-ANSI libraries support a subset of the AT&T UNIX System V subroutines. These
runtime libraries include

• File I/O functions (for example, open(), read(), fopen(), fprint(), fscanf())

• String and character manipulation functions (for example, isalpha(), isdigit())

• Mathematical functions (for example, abs(), sqrt(), tan())

• System functions (for example, abort(), setjmp(), longjmp(), sleep())

Compatibility
Prime uses a common operating system architecture on all 50 Series machines. Therefore, C
application programs compiled in 64V mode on one system can, without any modification,
be executed on another 50 Series system. Programs compiled in 32IX mode, however, do
not run on older machines.

50 Series Extensions to the C Language
The PRIMOS C programming language contains a number of extensions to the 1978 C
language, all of which are part of the ANSI standard unless otherwise stated. These
extensions are listed below.

• enum data type

• void data type

• long double data type, supporting quadruple precision floating point numbers

• fortran storage class

• Unary plus (+) operator

• Identifier names up to 32 characters in length

• Preprocessor commands #assert, #display, #list, #nolist, and #endincl (these
commands are not in the ANSI standard)

• Preprocessor command #elif

• Preprocessor operator defined

• Support for preprocessor tokens with the #include command

• Automatic string concatenation

A description of each extension is provided in Appendix A, Extensions to the C Language.

1-3

C User's Guide

SYSTEM RESOURCES SUPPORTING C
Application programs written in PRIMOS C can access a wide range of libraries, system
utilities, and file management resources. The sections below describe a few of the major
resources accessible to C application programs.

Libraries
Chapter 4, Using the C Library, contains a description of the non-ANSI C library functions
and Chapter 8, Using ANSI C, includes a description of the ANSI C library functions.

BIND Linker and SEG Loader
BIND and SEG are the 50 Series linking and loading utilities for both 64V-mode and 32IX-
mode programs. BIND and SEG combine separately compiled program modules, subroutines,
and libraries into an executable program. A single C source file can be a maximum of
128K bytes. All memory management, linking, and the like are handled by these utilities.
Various types of load maps may be obtained. Chapter 3, Linking C Programs, demonstrates
the use of BIND and SEG to link C programs.

Editors
The PRIMOS editor (ED) is a line-oriented text editor that enables you to enter and modify
source code and text files. A complete description of ED is in the New User's Guide to
EDITOR and RUNOFF. Prime also offers the screen editor EMACS as a separately priced
product. The EMACS screen editor is described in the EMACS Primer and the EMACS
Reference Guide.

Source Level Debugger
The Prime Source Level Debugger (DBG) is an interactive debugger that enables you to
debug C code interactively. Appendix B contains some suggestions for using DBG with C
programs. The Source Level Debugger User's Guide details the operation of DBG.

Multiple Index Data Access System
Prime Multiple Index Data Access System (MIDASPLUS™) is a software subsystem of
utilities and subroutines for creating and maintaining keyed-index/direct-access files.
MIDASPLUS provides the C programmer with a keyed-index multilevel file structure. All
housekeeping functions on the index and data subfiles are performed by MIDASPLUS
subroutines called from C programs.

Prime MIDASPLUS files created by programs written in one language may be accessed and
manipulated by programs written in other languages, thus ensuring compatibility. The
MIDASPLUS User's Guide contains a complete description of MIDASPLUS.

1-4

Overview of PRIMOS C

Chapter 5, Interfacing to Other languages, provides information on calling MIDASPLUS
from PRIMOS C programs.

Language Interfaces
Object modules generated by the C compiler are capable of calling and being called by
object modules generated by the COBOL 74, FORTRAN IV, FORTRAN 77, Pascal, or PL/I
compilers. This is possible because all 50 Series high-level languages are similar at the
object code level, and all use similar calling conventions. However, certain restrictions must
be adhered to.

• Data types must be compatible when variables are passed as parameters.

• All modules must be compiled in 64V, 32IX, or 321 mode.

• The C compiler must be informed that interlanguage calling is taking place by use of
the fortran keyword or by command line options.

Application programs written in C can also call Prime Macro Assembler (PMA) routines and
vice versa. For further information on PMA routines, see the Assembly Language
Programmer's Guide.

Chapter 5, Interfacing to Other Languages, provides guidelines and examples for interfacing
C to other 50 Series languages.

1-5

COMPILING PROGRAMS IN C

This chapter explains how to compile C programs under PRIMOS on 50 Series systems. The
first section of this chapter describes the include files that are provided with the C
compiler and libraries. The second section describes the PRIMOS search rules facility and
explains how to specify directories to be searched for include files. The last section
describes the use of the C compiler, the messages produced during compilation, and the
command line options available.

The PRIMOS C compiler generates binary code in 64V and 32IX segmented addressing modes
in two passes and three passes, respectively. The C compiler accepts a source program
meeting the requirements specified in this guide. The C compiler also accepts both .C and
.CC as suffixes for source files.

The C compiler, like the other high-level language compilers on the 50 Series, can generate
an object file, a source file listing, error and statistical data, and other helpful information
regarding the compilation of C application programs.

STANDARD INCLUDE FILES
The standard C include files are located in the directory SYSCOM. These files have names
that end in .INS.CC. The C compiler does not recognize files in SYSCOM that lack the
.INS.CC suffix. The .INS.CC suffix is optional in other directories. If you copy a header
file from SYSCOM to another directory, you may remove the suffix or not, as you wish.

Table 4-1 in Chapter 4 and Table 8-1 in Chapter 8 list the C include files in SYSCOM
that are provided for the non-ANSI and ANSI C libraries, respectively. The files
AKEYS.INS.CC, ERRD.INS.CC, and KEYS.INS.CC are installed as part of PRIMOS. They are
documented in Volume II of the Subroutines Reference Guide. Other products may also
provide C include files. For example, if MIDASPLUS is installed on your system, SYSCOM
contains the file PARM.K.INS.CC.

2-1

C Users Guide

INCLUDE FILES AND THE SEARCH RULES FACILITY
The PRIMOS search rules facility enables you to establish an INCLUDES search list. An
INCLUDES search list is a list of directories that are to be searched for an include file
whenever a #include directive is processed by the compiler. Although there are several
kinds of search lists, this section explains only the INCLUDES search list. For complete
information about the PRIMOS search rules facility, see the Advanced Programmer's Guide,
Volume II.

In PRIMOS C, you can specify directories to be searched for include files in a number of
different ways. When the C compiler encounters a #include directive, it searches for the
file in the following manner.

1. If the pathname is delimited by angle brackets (<. . .>), the compiler goes to step 2.

If the pathname is delimited by double quotes (". . ."), the compiler proceeds as
follows. If the pathname is a simple filename, the compiler searches the current
directory. If the pathname is an absolute pathname (that is, if it begins with a disk
partition) the compiler searches that disk partition for the specified path. If the
pathname is a full pathname (that is, if it begins with a top-level directory) the
compiler searches all the disk partitions for the specified path. If it still cannot find
the file, the compiler goes to step 2.

2. The compiler searches the directories specified in command line -INCLUDE options, if
any. If it cannot find the file in those directories, the compiler goes to step 3.

3. PRIMOS searches the INCLUDES search list and supplies pathnames to the compiler.
The compiler then searches these directories. If the compiler cannot find the file in
those directories, it goes to step 4.

4. The compiler searches the top-level directory SYSCOM. If it cannot find the file, the
compiler reports an error.

Note
The standard C include files in SYSCOM contain the suffix .INS.CC. Files in
SYSCOM that lack the .INS.CC suffix are not recognized by the C compiler. The
.INS.CC suffix is optional in other directories. If you copy a header file from
SYSCOM to another directory, you may remove the suffix or not, as you wish.

In directories other than SYSCOM, the statement

#include "name"

causes the compiler to search for the following files, in this order:

name.INS.CC
name.INS.C
name

Establishing Search Rules: To establish search rules for include files, perform the
following steps:

2-2

^ \

Compiling Programs in C

1. Create a template file called

[yourcAoice.]lNCLUDE$.SR

This file should contain a list of the pathnames of the directories that contain your
include files. List the directories in the order that you want them searched. For
example, you might create a file called MY.INCLUDES.SR that contains the following
directory names:

<SYS1>MASTER_DIR>INSERT_FILES
<SYS2>ME

2. Activate the template file by using the SET_SEARCH_RULES (SSR) command. For
example, if your file is named MY.INCLUDES.SR, type

OK, SSR MY.INCLUDES

This command sets your INCLUDES search list. This search list may contain system
search rules and administrator search rules in addition to the rules you specified in
MY.INCLUDES.SR.

When you give the SSR command shown in step 2, PRIMOS copies the contents of
MY.INCLUDES.SR into your INCLUDES search list. If you have no special system or
administrator search rules, your INCLUDES search list appears as follows when you type
the LIST_SEARCH_RULES (LSR) command:

List: INCLUDES
Pathname of template: <MYSYS>ME>CPROGS>MY.INCLUDES.SR

[home_dir]
<SYS1>MASTER_DIR>INSERT_FILES
<SYS2>ME

[home_dir], your current attach point, is the system default. It is always the first
directory searched, unless you remove it from the list or change the order of evaluation by
using the -NO_SYSTEM option of the SSR command. Additional search rules, established as
systemwide defaults by your System Administrator, may also appear at the beginning of
your INCLUDES search list. The above search rules initiate the search in [home_dir], then
search <SYS1>MASTER_DIR>INSERT_FILES, and finally search <SYS2>ME.

The SET_SEARCH_RULES and LIST_SEARCH_RULES commands are described in the
PRIMOS Commands Reference Guide. For more information about establishing search
rules, see the Advanced Programmer's Guide, Volume II.

Using Search Rules: The C compiler searches the contents of the directories according to
the pattern described at the beginning of this section.

Using [referencing__dir]: The Advanced Programmer's Guide, Volume II describes several
expressions that you can use in your list of search rules. One of these, [referencing dir],
has a special meaning for INCLUDES search lists, [referencing dir] is less useful in C than
in other Prime languages because include files can be specified in so many ways in C.

2-3

C User's Guide

Like [home_dir], [referencing_dir] is a variable that PRIMOS replaces with a directory
pathname. [referencing_dir] always evaluates to the pathname of the directory from which
the request for an include file is made. Thus, if a #include directive is located in a
source file, [referencing_dir] evaluates to the pathname of the directory that contains the
source file.

USING THE C COMPILER
Invoke the C compiler from PRIMOS command level with the command

CC sourcefile [-option 1] [-option 2] . . . [-option n]

where CC invokes the C compiler, sourcefile denotes the pathname of the C source program
to be compiled, and -option denotes an option controlling the compiler functions. All
compiler options begin with a hyphen.

For example, the command

OK, CC TEST_PROGRAM -LISTING -STATISTICS

compiles a program named TEST_PROGRAM.CC or TEST_PROGRAM.C with the -LISTING
and -STATISTICS options.

The compiler options are listed in Table 2-1, C Command Line Compiler Options, at the end
of this section. Each option is described in detail later in this chapter.

Compile-time Error Messages
The C compiler automatically displays an error message at the terminal for each error it
encounters during the compilation procedure. The C compiler also records compilation errors
in a source listing if one is specified. The format for C compiler error messages is

Error# n on source line = y has severity z:

descriptive-text

where n indicates the cumulative error count, y shows the source line on which the error
was encountered, and z states the severity of the error, as follows:

Verbose Error, warning, or information that is not normally displayed (see
description of -VERBOSE option on page 2-35)

Warning Error encountered that may later result in an unsuccessful execution

Fixable Recoverable syntax error that does not prevent code generation

2 - 4

f C o m p i l i n g P r o g r a m s i n C

f" Error Uncorrectable error that prevents code generation

Fatal Error that prevents further compilation

An example of a compile-time error message follows:
OK. SLIST BADPROGRAM.C
main()• {

p r i n t f (" h e l l o , w o r l d \ n ")
}

OK, CC BADPROGRAM -32IX
[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]

Error# 1 on source line = 4 has severity Error:
}

A syntax error was found; a "}" was found where another
token was expected. Error recovery was invoked.

01 Error and 00 Warnings detected in 4 source lines.

After any compilation is complete, the C compiler displays an end of compilation message:

nn Error and xx Warnings detected in y source lines.

wheTe nn indicates the total number of compilation errors. (OO indicates an error-free
compilation.)

Compiler Options
The C compiler provides a variety of compiler options that enable you to perform many
tasks during program compilation. These tasks include

• Generating a binary file

• Defining the properties of generated object code

• Generating a source listing and specifying its contents

• Generating compiler error and statistical information

• Controlling optimization

Many of the compiler options come in pairs. That is, for each option there is an option
having the opposite effect. One option of each pair is always the default. Compiler
options can be specified in any order.

The PRIMOS command line is not case-sensitive. Commands, compiler options, and
arguments can be specified in uppercase or lowercase.

In the summary of compiler options in Table 2-1, the default options are indicated by an
asterisk (*). A few of the options require an argument specification in addition to the
option specification. The argument specification is not preceded by a hyphen. The short

2 -5

C User's Guide

form of each option is underscored. The second column of the table indicates the valid
addressing mode(s) for each option; for example, an option designated 64V can be used only
in conjunction with the -64V option. Detailed explanations of the options follow the table.

TABLE 2-1. C Command Line Compiler Options

Option Modes Operation Performed

-32IX

-64V*
-6

-ANSI
-AN

-BIG

-BINARY*
-B

-BIT8*
-BIT

-CHECKOUT
-CH

-CIX
-CI

-CLUSTER
-CLU

-COMPATIBILITY
-COMPA

-COPY*

32IX,
64V

32IX,
64V

32IX,
64V

32IX,
64V

32IX,
64V

64V

32IX

32IX,
64V

64V
-DEBUG 32IX,
-DEB 64V

-DEFINE 32IX,
-DEF 64V

-DISALLOWEXPANSION 32IX
-DIS

-DOUBLEFLOATING* 32IX,
-DOU 64V
-ERRTTY* 32IX,
-ERRT 64V
-EXPLIST 32IX,
-EXP 64V

Asterisks (*)

Generates 32IX-mode object code.

Generates 64V-mode object code.

Examines a source program for adherence
to the ANSI C standard.

Assumes external arrays and pointed-to
objects span segment boundaries.
Generates binary (object) file. This option
may take an argument.
Sets bit 8 in character and string con
stants.

Executes only the compiler's first pass.

Enables 64V to call 32IX code. This op
tion takes an argument.

Causes optimization and code generation
for entire source file.

Compiles Version 6 source code as well as
Version 7, System III and System V
source code.

Passes parameters by value.

Generates information for full Source
Level Debugger (DBG) support.

Defines a specified name to be a specified
value. This option takes two arguments.

Causes named routine not to be expanded
inline. This option takes an argument.

Performs all floating-point math in double
precision.

Displays error messages on user's terminal.

Generates expanded (assembly) listing.

indicate defaults.

2-6

Compiling Programs in C

Option

TABLE 2-1. C Command Line Compiler Options (continued)

Modes Operation Performed

-EXTRACTPROTOTYPES
-EXTRAC

32IX

-FORCEEXPANSION 32IX
-FORCEE

-FRN 32IX,
64V

-HARDWAREROUNDING 32IX
-HARD

-HIGHENDPROCESSORS 64V
-HIGH

-HOLEYSTRUCTURES 32IX
-HOLE

-IGNOREREGISTER 32IX
-IG

-INCLUDE 32IX,
-INC 64V
-INPUT 32IX,
-I 64V

-INTEGEREXCEPTIONS 32IX
-INTE

-INTLONG* 32IX,
-INTL 64V

-INTRINSIC 32IX,
-INTR 64V

-INTSHORT 32IX,
-INTS 64V
-LBSTRING* 32IX,
-LBS 64V
-LISTING 32IX,
-L 64V

Creates header file with ANSI-style
prototype declarations for all functions in
source file. This option may take a path
name argument.

Forces named routine to be expanded in
line. This option takes an argument.

Generates Floating Round Number (FRN)
instruction before FST instruction.

Turns on hardware rounding.

Generates code optimized for the 4000,
6000, and 9000 series processors.
Causes all non-bit-field structure members
32 bits or larger to be aligned on 32-bit
boundaries.

Ignores the register keyword.

Specifies include search pathnames,
option takes an argument.

This

Designates the source file to be compiled.
A pathname must be specified. This op
tion is obsolete. Its use is not recom
mended.

Causes runtime errors to be generated for
integer overflow, underflow, and divide
by zero.
Generates 4-byte integers.

Causes compiler to generate inline code
for one of several library functions. This
option takes one or two arguments.
Generates 2-byte integers. Use of this op
tion is not recommended.

Places string constants in the linkage area.

Generates listing file. This option may
take an argument.

Asterisks (*) indicate defaults.

2-7

C User's Guide

TABLE 2-1. C Command Line Compiler Options (continued)

Option

-LOWENDPROCESSORS*
LOW

-NEWFORTRAN*
-NEWF

-NOANSI*
-NOAN

-NOBIG*

Modes Operation Performed

64V

64V

32IX,
64V

32IX,
64V

-NOBIT8 32IX,
-NOBIT 64V

-NOCHECKOUT 32IX,
-NOCH 64V

-NOCLUSTER* 32IX
-NOCLU

-NOCOMPATIBILITY* 32IX,
-NOCOMPA 64V

-NOCOPY 64V

-NODEBUG* 32IX,
-NODEB 64V

-NOERRTTY 32IX,
-NOERRT 64V

-NOEXPLIST* 32IX,
-NOEXP 64V

-NOFRN* 32IX,
-NOFR 64V

-NOHARDWAREROUNDING* 32IX
-NOHARD

-NOHOLEYSTRUCTURES* 32IX
-NOHOLE

N O I G N O R E R E G I S T E R 3 2 I X
NOIG

Generates code optimized for machines
other than the 4000, 6000, and 9000
series processors.

Uses the new interlanguage interface.

Does not examine source program for ad
herence to the ANSI C standard.

Assumes external arrays and pointed-to
objects do not span segment boundaries.
This option may cause use of 16-bit in
dexing.
Does not set bit 8 in character and string
constants. Use of this option is not
recommended.

Does not execute only the compiler's first
pass.
Does not cause optimization and code
generation for entire source file.
Does not accept Version 6 source code.

Passes parameters by reference.

Does not generate information for full
Source Level Debugger (DBG) support.

Does not display error messages on user's
terminal.

Does not generate an expanded listing file.

Does not generate FRN instructions.

Does not turn on hardware rounding.

Does not cause all non-bit-field structure
members 32 bits or larger to be aligned
on 32-bit boundaries.

Respects the register keyword.

Asterisks (*) indicate defaults.

2-8

Compiling Programs in C

TABLE 2-1. C Command Line Compiler Options (continued)

Option Modes Operation Performed

-NOINTEGEREXCEPTIONS*
-NOINTE

32IX

-NOONUNIT
-NOON

32IX,
64V

-NOOPTIMIZE*
-NOOPT

32IX,
64V

-NOPACKBYTES*
-NOPACK

32IX

-NOOPTSTATISTICS*
-NOOPTS

32IX

-NOPOP* 32IX,
64V

-NOQUADCONSTANTS*
-NOQUADC

32IX

-NOQUADFLOATING*
-NOQUADF

32IX

-NOSAFEPOINTERS*
-NOSAFE

32IX,
64V

-NOSEGMENTSPANCHECKING* 32IX
-NOSEG

- N O S I L E N T * 3 2 I X ,
- N O S I L 6 4 V

- N O S T A T I S T I C S * 3 2 I X
-NOSTAT

-NO_STORE_OWNER_FIELD* 32IX,
- N S O F 6 4 V

-NOSTRICTCOMPLIANCE* 32IX
-NOSTRIC

- N O S Y S O P T I O N S 3 2 I X
-NOSYS

- N O V E R B O S E * 3 2 I X ,
- N O V E R B 6 4 V

- O L D F O R T R A N 6 4 V
-OL

Does not cause runtime errors to be
generated for integer overflow, underflow,
and divide by zero.

Lets PRIMOS report the occurrence of fa
tal compiler errors.

Performs no object code optimization.

Does not pack adjacent single-byte entities
in structures and unions.

Does not print optimization statistics.

Removes old constant macro definition.

Does not support quad-precision constants.

Does not support quad-precision variables.

Does not always retain byte offset bit.

Does not cause two block-memory func
tions to produce correct code for segment-
spanning arguments.
Displays warning messages on the user's
terminal.

Does not generate compiler statistics.

Suppresses the generation of code that per
forms a store owner field operation.

Does not detect certain violations of the
ANSI standard.

Does not look for the system options file.

Does not display verbose messages on the
user's terminal.

Uses the old interlanguage interface.

Asterisks (*) indicate defaults.

2-9

C User's Guide

TABLE 2-1. C Command Line Compiler Options (continued)

Option

-OPTIMIZE
-OPT

-OPTIONSFILE
-OPTIO

-OPTSTATISTICS
-OPTS

-PACKBYTES
-PACK

-PARTIALDEBUG
-PAR

-PBSTRING
-PBS

-POP

Modes Operation Performed

32IX,
64V

32IX,
64V

32IX

32IX

32IX

32IX,
64V

32IX,
64V

-PREPROCESSONLY
-PRE

32IX

-PRODUCTION
-PROD

32IX,
64V

-QUADCONSTANTS
-QUADC

32IX

-QUADFLOATING
-QUADF

32IX

-SAFEPOINTERS
-SAFE

32IX

-SEGMENTSPANCHECKING
-SEG

32IX

-SHORTCALL
-SHORTC

32IX,
64V

-SINGLEFLOATING
-SIN

32IX,
64V

-SILENT
-SIL

32IX,
64V

Performs object code optimization,
option may take an argument.

This

Reads command line options from a
specified file. This option takes an ar
gument.
Prints optimization statistics.

Packs adjacent single-byte entities in struc
tures and unions.

Generates debugger symbol information
only for variables that are referenced.
Places string constants in the procedure
area.

Pops old macro definitions.

Generates file that contains source with
macros expanded. This option may take a
pathname argument.

Generates information for partial DBG
support.

Supports quad-precision constants when
the program is compiled without the
-ANSI option.

Supports quad-precision variables when the
program is compiled without the -ANSI
option.

Always retains byte offset bit.

Causes two block-memory functions to
produce correct code for segment-spanning
arguments.
Enables the compiler to generate shortcalls.
This option takes an argument.

Allows single precision floating-point
math.

Does not display warning messages on the
user's terminal.

Asterisks (*) indicate defaults.

2-10

Compiling Programs in C

TABLE 2-1. C Command Une Compiler Options (continued)

Option Modes Operation Performed

SOURCE 32IX,
64V

SPEAK 32IX

STANDARDINTRINSICS 32IX
STAN

STATISTICS 32IX,
STAT 64V

STORE_OWNER_FIELD 32IX,
SOF 64V

STRICTCOMPLIANCE 32IX
STRIC

SYSOPTIONS* 32IX
SYS

UNDEFINE 32IX
UNDEF

VALUEONLY 32IX
VALUE

VERBOSE 32IX,
VERB 64V

-XREF

-XREFS

32IX,
64V

32IX,
64V

Identical to -INPUT, this option is obsolete.
Its use is not recommended.

Enables compile-time progress messages
after each stage of the compiler.

Causes compiler to generate inline code
for all the options supported by the
-INTRINSIC option.

Generates compiler statistics on the user's
terminal.

Generates code within a program to store
the identity of a called procedure in a
known place.

Detects certain violations of the ANSI
standard, such as PRIMOS-specific exten
sions, when used in conjunction with
-ANSI.

Looks for the system options file.

Removes an initial definition. This option
takes an argument.

Identifies a routine that has no side ef
fects. This option takes an argument.

Displays verbose messages on the user's
terminal.

Generates a full cross-reference listing.

Generates a partial cross-reference listing.

Asterisks (*) indicate defaults.

2-11

C User's Guide

Command Line Compiler Options
This section provides detailed descriptions of C compiler options. Option pairs, that is,
options that have opposite effects, are listed together. An asterisk (*) indicates that the
option before it is the default.

▶ -32IX

Short form: -32IX

Generates object code in 32IX mode. This option is available on all newer 50 Series
processors (that is, all processors with four-digit names except the 2250™ processor). Code
produced with the -32IX command line option runs between 1.5 and 4.0 times faster than
code produced with the -64V option. When you use the -32IX option, the compiler prints
the following banner:

[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]

You may not put this option in an options file (see the -OPTIONSFILE option). You must
specify it on the command line.

▶ -64V*

Short form: -6

Generates object code in 64V mode. Code produced with this option runs on any 50 Series
machine newer than and including the 400™ processor.

Note
Use of the -64V option is not recommended. This option generates code that results
in poor performance. If your machine supports 32IX mode, use the -32IX option.

When you compile a C program in 64V mode, the compiler prints the following banner:

[CC Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]

You may not put this option in an options file (see the -OPTIONSFILE option). You must
specify it on the command line.

▶ -ANSI / -NOANSI*

Short forms: -AN / -NOAN

This option is intended for use with -32IX only. Examines a C source program for
adherence to the ANSI C standard. It can be used with -64V, but it only checks for uses
of the fortran keyword. For example:

2-12

Compiling Programs in C

mam()
{

fortran mkon$p();
}
OK, CC TEST -NEWFORTRAN -ANSI
[CC Rev. 23.0-T3.0 Copyright (c) 1990, Prime Computer, Inc.]

Error* 1; Error type = 269; Source line = 3;
Error severity = Warning

fortran mkon$p();

The use of the "fortran" keyword may not be portable construct.

00 Errors and 01 Warning detected in 4 source lines.

For information about writing, compiling, and linking ANSI C programs, see Chapter 8.

-ANSI
Instructs the C compiler to perform extra checking for violations of the ANSI C
standard.

-NOANSI
Instructs the C compiler to disregard violations of the ANSI C standard. Instead, the
compiler checks for violations of the C language as defined in the first (1978) edition of
The C Programming Language, by Kernighan and Ritchie.

You may not put either of these options in an options file (see the -OPTIONSFILE option).
^^ You must specify them on the command line.

▶ -BIG / -NOBIG*

Short forms: -BIG / -NOBIG

Determines the type of code generated for array and pointer references.

r - B I GAssumes that unless they are declared small, all external arrays, structures, and pointed-to
objects span segment boundaries and exceed 128K bytes.

-NOBIG
Assumes all external arrays and objects referenced by pointers that are declared with a
size smaller than 128K bytes do not span segment boundaries, thus allowing 16-bit array-
addressing code to be generated. The object code is faster, but introduces the risk of
incorrect array referencing code being generated for arrays that exceed one segment. This
option may cause 16-bit pointer increment and decrement code to be generated.

▶ -BINARY [argument]

Short form: -B

Generates and names a binary file. This option, however, does not define the properties of
the binary file. The argument specification for this option can be one of the following:

2-13

C Users Guide

A r g u m e n t M e a n i n g

pathname Indicates the pathname to which the object code is written.

YES* Instructs the C compiler to create a binary file named PROGRAM.BIN for
all programs compiled in 32IX mode and for 64V-mode programs with a
•CC or .C suffix. If you compile in 64V mode and the source filename
does not include a .CC or .C suffix, the C compiler generates an object
file named B_PROGRAM. This argument is the default.

NO Does not generate a binary file.

You may not put this option in an options file (see the -OPTIONSFILE option). You must
specify it on the command line.

▶ -BIT8* / -NOBIT8

Short forms: -BIT / -NOBIT

Controls the setting of the most significant bit in each byte of string and character
constants. This most significant bit is always ON for Prime ASCII, the basic character set
in the Prime Extended Character Set (Prime ECS). (For information about Prime ECS, see
Appendix F.) The purpose of disabling this bit by using -NOBIT8 is to provide compatibility
with algorithms that expect the integer value of character constants to be from 0 through
127 decimal.

Note
Areas of programs that need to use -NOBIT8 must be localized because character
constants generated with -NOBIT8 are not supported by any libraries or I/O
subsystems.

-BIT8
Produces object code that conforms to Prime ECS. All nonoctal character and string
constants have their eighth bit (most significant bit) set.

-NOBIT8
All nonoctal character and string constants have their eighth bit masked off, so that
they do not conform to Prime ECS. These constants are not recognized as members of
the standard Prime character set. Severe runtime problems occur if you attempt to use
these character constants outside of the routine compiled with this option.

▶ -CHECKOUT / -NOCHECKOUT*

Short forms: -CH / -NOCH

Runs only the compiler's first pass to increase compilation speed for detection of initial
program errors.

2-14

Compiling Programs in C

-CHECKOUT
Runs only the first pass of the compiler. No code generation or expanded listings can be
produced if this option is specified.

-NOCHECKOUT
Runs all passes of the compiler.

▶ -CIX routinename

Short form: -CI

This option is valid in 64V mode only.

Causes the compiler to assume that the external routine routinename was compiled in 32IX
mode and to generate the correct calling sequence. No Argument Pointers (APs) are used,
all pointers are shortened to two 16-bit halfwords, and the address of the argument list is
placed in the XB register before the PCL procedure call. See Chapter 5, Interfacing to
Other Languages, for more information.

▶ -CLUSTER / -NOCLUSTER*

Short forms: -CLU / -NOCLU

These options are valid in 32IX mode only.

Controls the order of compilation for a source file with multiple routines. -CLUSTER is
useful only in conjunction with -OPTIMIZE.

-CLUSTER
Causes the compiler to accumulate intermediate representation for an entire source file
before performing optimization and code generation. -CLUSTER behaves differently
depending on the optimization level specified:

• With -NOOPTIMIZE (the default), -CLUSTER simply increases the amount of
memory required to compile a given source file.

• With -OPTIMIZE 1, -OPTIMIZE 2, or -OPTIMIZE 3, -CLUSTER causes the compiler
to build a calling tree (call graph) and to process inline expansion bottom-up. As
optimization level increases, the complexity of routines that are considered candidates
for inline expansion also increases. If a nonstatic routine is expanded inline, the
compiler also generates code for an external version of the routine so that it can be
reached from routines in other source files.

-NOCLUSTER
Causes the compiler to accumulate intermediate representation and perform optimization
and code generation for each function before moving on to the next function in the
source file.

2-15

C User's Guide

▶ -COMPATIBILITY / -NOCOMPATIBILITY*

Short forms: -COMPA / -NOCOMPA

Controls the handling of AT&T UNIX Version 6 C source incompatibilities.

-COMPATIBILITY
Compiles AT&T UNIX Version 6 C source code as well as the more recent AT&T UNIX
Version 7, System III and System V C source code. This option also permits the use of
Version 6 syntax (for example, =op and old initialization style).

-NOCOMPATIBILITY
Interprets all occurrences of Version 6 C syntax as errors.

▶ -COPY* / -NOCOPY

Short forms: -COPY / -NOCOPY

These options are valid in 64V mode only.

Controls the passing of arguments from one function to another function either by reference
or by value. See Chapter 5, Interfacing to Other Languages, for more information.

-COPY
Passes arguments from one function to another function by value.

-NOCOPY
Passes arguments from one function to another function by reference.

▶ -DEBUG / -NODEBUG*

Short forms: -DEB / -NODEB

Enables full Source Level Debugger (DBG) support.

-DEBUG
Enables DBG support.

-NODEBUG
Does not enable DBG support.

Refer to Appendix B, Debugging C Programs, for more information on DBG.

▶ -DEFINE name value

Short form: -DEF

Simulates an initial #define C preprocessor command. That is, compiling the source file
MYPROGRAM.CC with the command line

2-16

Compiling Programs in C

OK, CC MYPROGRAM -DEFINE MYCONST 20

has the same effect as specifying

#define MYCONST 20

as the first directive in the source file MYPROGRAM.CC. If no value is specified following
name, value is assumed to be 1. If value contains spaces, enclose it in single quotation
marks. For example,

OK, CC MYPROGRAM -DEFINE SUM '5 + 2'

You may not use the -DEFINE option to define macros with arguments on the command
line. You may specify as many -DEFINE options as required on the command line.

▶ -DISALLOWEXPANSION

See -FORCEEXPANSION.

▶ -DOUBLEFLOATING* / -SINGLEFLOATING

Short forms: -DOU / -SIN

Controls the precision of floating-point math operations.

-DOUBLEFLOATING
Performs all floating-point math in double precision.

-SINGLEFLOATING
Allows the calculation to be performed in single precision if both arguments to a
floating-point operation are single precision.

▶ -ERRTTY* / -NOERRTTY

Short forms: -ERRT / -NOERRT

Controls the display of compiler error messages on a user's terminal.

-ERRTTY
Displays compiler error messages on the user's terminal.

-NOERRTTY
Does not display compiler error messages on the user's terminal.

See the description of compiler messages earlier in this chapter. The -NOERRTTY option
does not affect the contents of a file produced with the -LISTING option. It affects only
error messages printed to the terminal.

2-17

C User's Guide

▶ -EXPLIST / -NOEXPLIST*

Short forms: -EXP / -NOEXP

Controls the insertion of pseudo-assembly code into the source listing file.

-EXPLIST
Causes pseudo-Prime Macro Assembler (PMA) code to be written to the listing file for
each C language statement in the source file.

-NOEXPLIST
Does not insert pseudo-PMA statements into the source listing file.

▶ -EXTRACTPROTOTYPES [pathname]

Short form: -EXTRAC

This option is valid in 32IX mode only.

Causes the compiler to create a file that contains ANSI-style prototype declarations for all
functions defined in the source file.

The pathname argument specifies the name of the file to be created by
-EXTRACTPROTOTYPES. If the pathname is omitted, the default name of the file is
name.H, where name is the root name of the source file.

For more information about -EXTRACTPROTOTYPES, see Chapter 8.

▶ -FORCEEXPANSION routine / -DISALLOWEXPANSION routine

Short forms: -FORCEE / -DIS

These options are valid in 32IX mode only.

Overrides the compiler's default algorithm for determining which routines are expanded
inline. Both -FORCEEXPANSION and -DISALLOWEXPANSION work only when used in
conjunction with -CLUSTER. If you specify either -FORCEEXPANSION or
-DISALLOWEXPANSION without specifying -CLUSTER, the compiler ignores it.

-FORCEEXPANSION
Orders the compiler to expand the named routine inline.

-DISALLOWEXPANSION
Forbids the compiler to expand the named routine inline.

2-18

Compiling Programs in C

▶ -FRN / -NOFRN*

Short forms: -FR / -NOFR

Controls generation of the floating-point round instruction. The -FRN option usually
improves the accuracy of calculations involving single precision floating-point numbers.
Such numbers are type float in C.

For programs compiled in 32IX mode on newer 50 Series systems (that is, all systems with
four-digit names except the 2250), -FRN has been superseded by the
-HARDWAREROUNDING option (-HARD). If you have one of these systems, use
-HARDWAREROUNDING instead of -FRN. (See the discussion of -HARDWAREROUNDING.)

-FRN
Causes all single precision numbers to be rounded each time they are moved from a
register to main storage. -FRN adds the Prime Macro Assembler instruction FRN to the
generated code at every single precision store. For information about how this
instruction works, see the System Architecture Guide and the Instruction Sets Guide.
The rounding method that is used ordinarily reduces loss of accuracy in the low-order
bits when many calculations are performed on the same number.

-NOFRN
Does not generate FRN instructions.

Occasionally, a program may give less accurate results with -FRN than without it. Use
-FRN only if you are familiar enough with the FRN instruction to know how it will
affect the operations in your program.

-FRN does not affect double precision real numbers (double) or quadruple precision floating
point numbers (long double). Often the best way to gain increased accuracy is to use
double or long double numbers rather than float. -FRN causes a slight increase in
execution time, and should therefore be used only when maximum accuracy for single
precision numbers is a major consideration.

▶ -HARDWAREROUNDING / -NOHARDWAREROUNDING*

Short forms: -HARD / -NOHARD

This option is valid in 32IX mode only.

-HARDWAREROUNDING enables hardware rounding for floating-point operations. This
option usually improves the accuracy of calculations involving both single precision and
double precision real numbers (float, double). -HARDWAREROUNDING has an effect only
with the newer 50 Series systems (that is, all systems with four-digit names except the
2250). On these systems, use -HARDWAREROUNDING instead of -FRN for single precision
rounding. Do not use -HARDWAREROUNDING and -FRN together; such use is redundant
and degrades runtime performance.

2-19

C User's Guide

-HARDWAREROUNDING
Enables hardware rounding for the following floating-point operations: add, subtract,
multiply, divide, store, and compare. It ordinarily provides greater accuracy than -FRN,
which causes rounding to occur only when a number is stored. For information about
how hardware rounding is performed, see the System Architecture Guide and the
Instruction Sets Guide. The rounding method that is used ordinarily reduces loss of
accuracy in the low-order bits when many calculations are performed on the same
number.

-NOHARDWAREROUNDING
Causes no rounding to be performed.

Occasionally, a program may give less accurate results with -HARDWAREROUNDING than
without it. Use -HARDWAREROUNDING only if you are familiar enough with hardware
rounding to know how it will affect the operations in your program.

-HARDWAREROUNDING does not affect quadruple precision floating-point numbers (long
double). Often the best way to gain increased accuracy is to use double numbers rather
than float, or long double numbers rather than double. -HARDWAREROUNDING causes a
slight increase in execution time, and should therefore be used only when maximum
accuracy is a major consideration, and when it is not possible to convert to the next higher
precision.

▶ -HIGHENDPROCESSORS / -LOWENDPROCESSORS*

Short forms: -HIGH / -LOW

These options are valid in 64V mode only.

Controls the target machine optimization for 64V-mode code generation. The distinction
between high-end and low-end processors is not valid in 32IX mode, which performs fairly
consistently across all machines on which it runs. All newer 50 Series processors — that
is, all processors with four-digit names except the 2250 - can generate 32IX-mode code.

-HIGHENDPROCESSORS
Generates optimal code for all processors in the 4000, 6000, and 9000 series by avoiding
the use of skip instructions. Code generated with this option runs on all 50 Series
machines, but runs faster on the high-end processors.

-LOWENDPROCESSORS
Generates optimal code for 50 Series machines other than the 4000, 6000, and 9000 series
processors. Code generated under this option runs on all 50 Series machines, but runs
faster on the low-end machines.

2-20

Compiling Programs in C

▶ -HOLEYSTRUCTURES / -NOHOLEYSTRUCTURES*

Short forms: -HOLE / -NOHOLE

These options are valid in 32IX mode only.

Controls the alignment of structure members 32 bits or larger that are not bit fields.

-HOLEYSTRUCTURES
Causes all non-bit-field structure members that are 32 bits or larger to be aligned on
even word (32-bit) boundaries.

-NOHOLEYSTRUCTURES
Causes all non-bit-field structure members that are 32 bits or larger to be aligned on
halfword (16-bit) boundaries.

▶ -IGNOREREGISTER / -NOIGNOREREGISTER

Short forms: -IG / -NOIG

These options are valid in 32IX mode only.

Controls the meaning of the register keyword. In 64V mode, variables declared with the
register keyword are placed not in registers, but in the stack frame.

-IGNOREREGISTER
Ignores the register keyword and allows the compiler's optimizer to control all
placement of register variables. This option is the default at optimization levels 1 and
higher.

-NOIGNOREREGISTER
Respects the register keyword. The option is the default at -NOOPTIMIZE.

▶ -INCLUDE pathname

Short form: -INC

Specifies an additional directory to be searched when the compiler is attempting to locate
files that were specified with #include preprocessor commands. The pathname must end in
a directory name.

In PRIMOS C, you can specify directories to be searched for #include files in a number of
different ways. The search algorithm used by the C compiler is described on page 2-2.

2-21

C User's Guide

▶ -INPUT pathname

Short form: -I

Is identical to the -SOURCE option. That is, both options designate the source file
pathname to be compiled. For example,

CC -INPUT pathname

and

CC pathname

produce the same result. Also, pathname must not be designated more than once on the
command line. The -INPUT option is obsolete, and its use is not recommended.

You may not put this option in an options file (see the -OPTIONSFILE option). You must
specify it on the command line.

▶ -INTEGEREXCEPTIONS / -NOINTEGEREXCEPTIONS*

Short forms: -INTE / -NOINTE

These options are valid in 32IX mode only.

Forces the hardware to take a fault on integer overflow, underflow, and division by zero.

-INTEGEREXCEPTIONS
Enables the integer exception-handling mechanism. When integer arithmetic causes an
integer to be larger than the data item to which it is assigned, a FIXEDOVERFLOW
runtime error occurs. When a division by zero is encountered, a ZERODIVIDE runtime
error occurs.

-NOINTEGEREXCEPTIONS
Does not enable integer exception handling.

▶ -INTLONG* / -INTSHORT

Short forms: -INTL / -INTS

Controls the meaning of the int keyword.

-INTLONG
This is the standard operational mode for the PRIMOS C compiler. The int keyword
means long int, or 32-bit integer. All undeclared functions are expected to return a
long int.

-INTSHORT
This option is useful when debugging code to be ported to a machine where int means
short int, or 16-bit integer. Use of this option is not recommended.

2-22

Compiling Programs in C

When you call a function from a program compiled with -INTSHORT, parameters of
type short or char are converted to type long int, just as they are with the default,
-INTLONG. This conversion allows you to use the standard C libraries. You must,
however, declare all C library functions that return type int as returning type long.
Otherwise, the C compiler assumes that the functions return type short.

▶ -INTRINSIC [sourcename] intrinsicname

Short form: -INTR

Causes the compiler to generate inline code for, or a shortcall to, any of a limited number
of common C library routines. The first argument, sourcename, is optional and is the name
that is used in the source program to reference the intrinsic function. If this argument is
missing, it is assumed to be the same as Hintrinsicname}. The last argument to the option,
intrinsicname, is the true name of the intrinsic function. The currently supported intrinsic
routines are as follows:

• In V mode, strlen(), strcpy(), and strncpy().

• In IX mode, abs(), fabs(), strlenC), strcmp(), strcpy(), strncpy(), and, if -ANSI is
specified, memcpy().

If -ANSI is not specified, specifying -INTRINSIC STRNCPY enables strncpy() to perform a
block move. If -ANSI is specified, specifying -INTRINSIC MEMCPY enables memcpy() to
perform a block move, and specifying -INTRINSIC STRNCPY enables strncpy() to perform
according to the standard: that is, it copies the specified number of characters from string
1 to string 2, then pads any remaining spaces in string 2 with '\0's.

For example, suppose you invoke the compiler with the command line

OK, CC MYPROGRAM -INTRINSIC MYSTRLEN STRLEN

During compilation, each call to the function MYSTRLEN in the program MYPROGRAM causes
the compiler to generate inline code for the C library function strlen().

The intrinsic versions of strncpy() and memcpy() do not copy strings that span segment
boundaries unless the -SEGMENTSPANCHECKING option is specified.

▶ -LBSTRING* / -PBSTRING

Short forms: -LBS / -PBS

Controls the placement of string constants.

-LBSTRING
String constants are placed in the linkage area and thus may be modified at runtime.
This is the default.

2-23

C User's Guide

-PBSTRING
String constants are placed in the procedure area and thus may not be modified at
runtime. They may, however, be shared between multiple processes. This option
improves performance slightly.

▶ -LISTING [argument]

Short form: -L

Controls generation of a source listing file. The argument specification can be one of the
following:

A r g u m e n t M e a n i n g

pathname Source listing is written to the file pathname.

YES Instructs the C compiler to create a listing file named PROGRAM.LIST for
all programs compiled in 32IX mode and for 64V-mode programs with a
.CC or .C suffix. If you compile in 64V mode and the source filename
does not include a .CC or .C suffix, the C compiler generates a listing
file named L_PROGRAM. This argument is the default.

NO Does not generate a source listing file. This is the default when you do
not specify the -LISTING option.

TTY Source listing is displayed on the user's terminal.

You may not put this option in an options file (see the -OPTIONSFILE option). You must
specify it on the command line.

▶ -LOWENDPROCESSORS*

See -HIGHENDPROCESSORS.

▶ -NEWFORTRAN* / -OLDFORTRAN

Short forms: -NEWF / -OL

These options are valid in 64V mode only.

Controls the interlanguage interface in 64V mode. In 32IX mode, only the new language
interface is available.

-NEWFORTRAN
Uses the new interlanguage interface in 64V mode. This is the default when you
compile a 64V-mode program that uses the fortran keyword.

2-24

Compiling Programs in C

f * - O L D F O R T R A N" Uses an old, obsolete interlanguage interface in 64V mode. If you compile a 64V-mode

program with the -OLDFORTRAN option, the compiler issues a warning. You are
strongly encouraged to use the new interlanguage calling interface instead of the old one.

▶ -NOONUNIT

Short form: -NOON

Lets PRIMOS report the occurrence of fatal compiler errors. Use of this command option is
not recommended, as the compiler performs appropriate cleanup procedures and PRIMOS does
not.

▶ -OLDFORTRAN

See -NEWFORTRAN.

▶ -OPTIMIZE [level] / -NOOPTIMIZE*

Short forms: -OPT / -NOOPT

Controls object code optimization.

-OPTIMIZE
Without an optimization level, this option is valid in 64V mode only. Causes all data to
be even halfword-aligned, and causes variables declared register to be copied into the
local stack frame.

-OPTIMIZE 1
This option is valid in 32IX mode only. Performs first-level optimizations:

• Register allocation

• Complex tree pruning

• Unreachable code elimination

• Peephole optimizations such as branch chaining, instruction changing (complex
strength reduction), and instruction elimination

-OPTIMIZE 2
This option is valid in 32IX mode only. Performs second-level optimizations:

• Solving of data flow equations and use of this information

• Post-op improvements

• Loop invariant code removal

• Induction expression identification and elimination
r
r

2-25

C User's Guide

• Copy propagation

• Dead variable elimination

• Useless code removal

• Pointer comparison improvement

-OPTIMIZE 3
This option is valid in 32IX mode only. Performs third-level optimizations:

• Elimination of tail recursion

• Running of copy propagation iteratively until no further changes are made to the
intermediate representation

• Running of dead variable elimination iteratively until there are no more dead
variables to remove

• Increase of the complexity of routines that are made available for inline expansion

• Provision of more sophisticated register tracking to allow better overlapping of
temporary, scratch, and special registers

• More aggressive temporary assignment

Note
When you use second-level or third-level optimizations, compilation time is
significantly longer than at lower optimization levels. Debug all code fully before
you use the -OPTIMIZE option.

-NOOPTIMIZE
Does not perform any object code optimization. However, constant folding and simple
strength reduction are performed in both 64V and 32IX modes. In 32IX mode, simple
tree pruning, conversion propagation, and avoidance of code generation for discarded
values are also performed.

▶ -OPTIONSFILE pathname

Short form: -OPTIO

Specifies that you have placed compiler command line options in a text file called
pathname. The compiler processes the options file before compiling your program. The
optional suffixes for an options file are .OPTIONS.CC and .OPTIONS.C. The compiler
automatically appends a suffix if needed. An options file may contain any options except
the following: -32IX, -64V, -ANSI, -NOANSI, -BINARY, -INPUT, -LISTING, -SOURCE,
-SYSOPTIONS (32IX mode only), -NOSYSOPTIONS (32IX mode only). Options files may be
nested for up to nine levels. A single options file may contain no more than 1024
compiler options. You may use CPL style comments in an options file. A /* comments
out until the end of line. Blank lines are also allowed.

2-26

Compiling Programs in C

▶ -OPTSTATISTICS / -NOOPTSTATISTICS*

Short forms: -OPTS / -NOOPTS

These options are valid in 32IX mode only.

Controls the printing of optimization statistics. This option is meaningful only when used
in conjunction with an optimization level of 1 or higher. See the discussion of the
-OPTIMIZE option.

-OPTSTATISTICS
Prints compiler statistics about optimization.

-NOOPTSTATISTICS
Does not print compiler statistics about optimization.

▶ -PACKBYTES / -NOPACKBYTES

Short forms: -PACK / -NOPACK

These options are valid in 32IX mode only.

Controls the alignment of contiguous single-byte entities in structures and unions.
Ordinarily, these entities are structure members of type char. Structure or union members
that are larger than a single byte (including character arrays) are aligned to start on a
halfword (16-bit) boundary.

-PACKBYTES
Packs adjacent single-byte entities in structures or unions, two per halfword.

-NOPACKBYTES
Causes adjacent single-byte entities in structures and unions to be stored in the high byte
of a 16-bit halfword, followed by a single-byte hole.

If -PACKBYTES is specified, the structure
struct smallpack {

char a;
char b;
char c;
char arr[3];

};
is stored

1
as
8 bits 1 8 bits I
a b (word 1)
c (word 2)
a r r [0] a r r [l] (word 3)
a r r [2] (word 4)

2-27

C User's Guide

It is not stored as
8 bits I 8 bits I
a b (w o r d 1)
c a r r [0] (w o r d 2)
a r r [l] a r r [2] (w o r d 3)

If -PACKBYTES is not specified, the previous example is stored as
8 bits I 8 bits I
a (w o r d 1)
b (w o r d 2)
c (w o r d 3)
a r r [0] a r r [l] (w o r d 4)
a r r [2] (w o r d 5)

▶ -PARTIALDEBUG

Short form: -PAR

This option is valid in 32IX mode only.

Generates symbol information for the Source Level Debugger (DBG) only for variables that
are actually referenced in expressions. (Refer to Appendix B, Debugging C Programs, for
more information on DBG.) With -PARTIALDEBUG, the debugger does not know about
symbols that are declared but never referenced. Use of this option can dramatically
decrease the amount of debugger object text emitted for a routine, because most routines
include many declarations that are not used.

▶ -PBSTRING

See -LBSTRING.

▶ -POP / -NOPOP*

Short forms: -POP / -NOPOP

Controls pushing and popping of multiple #define macro definitions if a macro is defined
more than once.

-POP
Pushes previously defined values onto a value stack each time a new macro definition is
encountered. A macro definition can be removed with a single #undef, which also
reinstates the previous value for the macro definition.

-NOPOP
Discards the old value and replaces it with the new value.

2-28

Compiling Programs in C

▶ -PREPROCESSONLY [pathname]

Short form: -PRE

This option is valid in 32IX mode only.

Causes the output of the C preprocessor to be placed in the specified file. If the pathname
argument is omitted, the default name of the file is name.l, where name is the name of
the source file.

Subsequent phases of the compilation are not performed. Use this option to make sure that
your macros are expanded in the way you intend. If -ANSI is also specified, the resulting
file is much more readable than if -ANSI is not specified.

▶ -PRODUCTION

Short form: -PROD

Enables production level DBG support. (Refer to Appendix B, Debugging C Programs, for
more information on DBG.) This support includes information about each program block
and symbol, but does not include statement information.

▶ -QUADCONSTANTS / -NOQUADCONSTANTS*

Short forms: -QUADC / -NOQUADC

These options are valid in 32IX mode only.

Enables support for quadruple precision floating-point constants when the program is
compiled without the -ANSI option.

-QUADCONSTANTS
Allows the use of quad-precision constants (type long double). Quad-precision constants
are specified in the same way as double constants, with an added "L" suffix. ("L" may
be in uppercase or lowercase.)

Note
The -ANSI C compiler option automatically includes support for quad-precision
constants.

-NOQUADCONSTANTS
Does not allow the use of quad-precision constants.

▶ -QUADFLOATTNG / -NOQUADFLOATING*

Short forms: -QUADF / -NOQUADF

These options are valid in 32IX mode only.

2-29

C User's Guide

Enables support for quadruple precision floating-point variables when the program is
compiled without the -ANSI option.

-QUADFLOATING
Allows the use of quad-precision variables. Such variables are declared as type long
double.

Note
The -ANSI C compiler option automatically includes support for quad-precision
constants.

-NOQUADFLOATING
Does not allow the use of quad-precision variables.

▶ -SAFEPOINTERS / -NOSAFEPOINTERS*

Short forms: -SAFE / -NOSAFE

These options are valid in 32IX mode only.

Controls the preservation of the byte offset bit when converting pointers to integers.

-SAFEPOINTERS
Always preserves the byte offset bit of pointers when converting them to integers, even
if the pointer type is noncharacter and thus the pointer should not have an odd byte
offset. Use this option only in tricky C code where noncharacter pointers are used to
hold odd integer flags (such as -1). If even integers (such as -2) are used for the flags,
use of this option is not necessary. This option is not the default, and considerably
better code is generated for pointer comparisons if the option is not used.

-NOSAFEPOINTERS
When converting pointers to integers (for example, for comparisons), assumes that any
noncharacter pointers point to halfword-aligned objects and thus do not have byte offset
bits.

▶ -SEGMENTSPANCHECKING / -NOSEGMENTSPANCHECKING*

Short forms: -SEG / -NOSEG

These options are valid in 32IX mode only.

Tells two intrinsic functions to check for arguments that span segment boundaries.

2-30

Compiling Programs in C

-SEGMENTSPANCHECKING
Causes the two block-memory intrinsic functions strncpy() and memcpy() to check for
segment-spanning arguments before performing their operations. If any of the arguments
span segments, the compiler generates slower code that produces the correct results across
segment boundaries. This option works only if you specify it in conjunction with one
or more of the following: -INTRINSIC STRNCPY, -INTRINSIC MEMCPY,
-STANDARDINTRINSICS.

-NOSEGMENTSPANCHECKING
Does not cause the two functions to check for segment-spanning arguments.

▶ -SHORTCALL routinename

Short form: -SHORTC

Instructs the compiler to generate a shortcall to the specified routinename (either a JSXB or
a JMP, depending on addressing mode). The actual behavior of this option varies between
64V and 32IX modes; see Chapter 6, Advanced Topics, for more information.

▶ -SINGLEFLOATING

See -DOUBLEFLOATING.

▶ -SILENT / -NOSILENT*

Short forms: -SIL / -NOSIL

Controls the output of warning and verbose compiler error messages.

-SILENT
Prevents verbose and warning compiler error messages from appearing. These messages
are not displayed on the user's terminal or printed in the source listing file.

-NOSILENT
Causes verbose and warning compiler error messages to appear on the user's terminal and
in the source listing file.

See the description of compiler error messages on page 2-4.

▶ -SOURCE pathname

Short form: -SOURCE

Is identical to the -INPUT option. That is, they both designate a source file pathname to
be compiled. For example,

2-31

C User's Guide

CC -SOURCE pathname

and

CC pathname

produce the same result. Also, pathname must not be designated more than once on the
command line. The -SOURCE option is obsolete, and its use is not recommended.

You may not put this option in an options file (see the -OPTIONSFILE option). You must
specify it on the command line.

▶ -SPEAK

Short form: -SPEAK

This option is valid in 32IX mode only.

Enables the display of compile-time progress messages. These messages indicate which
include files are being processed and when the compiler is parsing, generating, and emitting
code.

▶ -STANDARDINTRINSICS

Short form: -STAN

This option is valid in 32IX mode only.

Causes the compiler to generate inline code for, or a shortcall to, a small group of common
C library routines. -STANDARDINTRINSICS generates code for all of the routines that can
be enabled separately by the -INTRINSIC option. These routines include abs(), fabs(),
strcmp(), strcpy(), strlen(), strncpy(), and, if -ANSI is specified, memcpy().

If -ANSI is not specified, strncpy() is enabled to perform a block move. If -ANSI is
specified, memcpy() is enabled to perform a block move, and strncpy() is enabled to
perform according to the standard: that is, it copies the specified number of characters
from string 1 to string 2, then pads any remaining spaces in string 2 with '\0's.

The intrinsic versions of strncpy() and memcpy() do not copy strings that span segment
boundaries unless the -SEGMENTSPANCHECKING option is specified.

2-32

Compiling Programs in C

▶ -STATISTICS / -NOSTATISTICS*

Short forms: -STAT / -NOSTAT

Controls the display of compiler statistical data on the user's terminal.

-STATISTICS
Displays statistical data on compiler internal table use, number of source lines compiled,
and average compilation speed.

-NOSTATISTICS
Does not display compiler statistical data on the user's terminal.

▶ -STORE_OWNER_FIELD / -NO_STORE_OWNER_FIELD*

Short forms: -SOF / -NSOF

Stores the identity of called procedures in a location available to the PRIMOS
DUMP_STACK command mechanism. When the PRIMOS DUMP_STACK command is
issued, the names of procedures compiled with -STORE_OWNER_FIELD appear within the
information displayed for that procedure's stack frame.

-STORE_OWNER_FIELD
Causes the generation of code that stores the name of each procedure directly following
its ECB. The procedure name can then be used by the PRIMOS DUMP_STACK
mechanism.

-NO_STORE_OWNER_FIELD
Suppresses the generation of code that stores the identity of a called procedure.

▶ -STRICTCOMPLIANCE / -NOSTRICTCOMPLIANCE*

Short forms: -STRIC / -NOSTRIC

These options are valid in 32IX mode only. Used to detect certain violations of the ANSI
standard, mainly PRIMOS extensions that are not available in other C compilers. In
particular, this option causes uses of the fortran keyword to be flagged as an error.
-STRICTCOMPLIANCE should be used in conjunction with the -ANSI option.

-STRICTCOMPLIANCE
Checks for certain ANSI violations and issues warnings/errors if found.

-NOSTRICTCOMPLIANCE
Does not check for certain ANSI violations.

2-33

C User's Guide

▶ -SYSOPTIONS* / -NOSYSOPTIONS

Short forms: -SYS / -NOSYS

These options are valid in 32IX mode only.

Controls reading of an optional global system options file. This file can be processed in
32IX mode only. If -SYSOPTIONS is active (the default), the system options file is
processed at the start of command line processing.

-SYSOPTIONS
Looks for the file SYSOVL>CI.OPT10NS.CC and if the file exists, processes it as if you
had typed

OK, CC -32IX -OPTIONSFILE SYS0VL>CI.OPTIONS.CC

on the command line. The alternate name for this file is SYSOVL>CI.OPTIONS.C.

-NOSYSOPTIONS
Does not look for the file SYSOVL>CI.OPTIONS.CC.

You may not put either of these options in an options file (see the -OPTIONSFILE option).
You must specify them on the command line.

▶ -UNDEFINE macroname

Short form: -UNDEF

This option is valid in 32IX mode only.

Removes any initial macro definition for macroname. The following initial definitions are
entered by the compiler in 32IX mode: CI as 1, 50SERIES as 1, DEBUG as 1
if the -DEBUG option has been specified, and OPTIMIZE as the optimization level
specified on the command line, if any.

▶ -VALUEONLY routinename

Short form: -VALUE

This option is valid in 32IX mode only.

Identifies the specified routinename as having no side effects, thus allowing the optimizer to
remove it as loop invariant code.

2-34

Compiling Programs in C

▶ -VERBOSE / -NOVERBOSE*

Short forms: -VERB / -NOVERB

Controls the display of verbose messages (messages that are not normally displayed).

-VERBOSE
Causes verbose messages to be displayed on the user's terminal and in listing files.

-NOVERBOSE
Prevents verbose messages from appearing. These messages are not displayed on the user's
terminal or printed in the source listing file.

See the description of compiler messages earlier in this chapter.

▶ -XREF / -XREFS

Short forms: -XREF / -XREFS

Controls generation of full or partial cross-reference listing.

-XREF
Generates a full symbol cross-reference at the end of the listing file. Information as to
the site, type, storage class, line declared, and lines used is printed in the listing file for
each declared symbol.

-XREFS
Prints only information about symbols that have been referenced at least once after they
have been declared.

2-35

LINKING C PROGRAMS

This chapter provides you with the basic information you need to link and execute non-
ANSI C programs under PRIMOS. (See Chapter 8 for information about linking and
running ANSI C programs.) It describes the CCMAIN library, the runtime libraries, and the
use of BIND and SEG.

Although PRIMIX uses the same C compiler as PRIMOS, the command syntax and library
functions described in this book are different from those available under PRIMIX. For
information about linking and executing C programs under PRIMIX and about the C
language libraries supplied with PRIMIX, consult the PRIMIX references listed in About This
Book.

The CCMAIN library allows you to pass arguments to your program from the command
line in the customary C fashion. (If you do not use this library, PRIMOS does not allow
you to use command line arguments.) CCMAIN parses the PRIMOS command line used to
invoke the program. It then passes the PRIMOS command line to your MAIN program in
the argument count/argument value (argc/argv) format. You must link CCMAIN before
you link your object files.

Note
There is a new library called ANSI CCMAIN. It allows you to pass arguments to
your program from the command line as CCMAIN does. Additionally, ANSI_CCMALN
enables calls to the ANSI C library functions. (See Chapter 8 for more information
about the ANSI C library.)

3-1

C User's Guide

RUNTIME LIBRARIES
Two runtime libraries come with the PRIMOS C compiler: C_LIB and CCLIB. C_LIB is a
binary library containing DYNTs (dynamic links) to two Executable Program Format (EPF)
libraries in the directory LIBRARIES*. The EPF libraries contain the runtime library
routines described in Chapter 4. Use the C_LIB DYNT library with the BIND utility, not
with the SEG utility. For more information about EPFs, see the Programmer's Guide to
BIND and EPFs. The CCLIB library provides the same functionality as the C_LIB
DYNT library, except that CCLIB links much more slowly, results in a larger program, and
contains no DYNTs.

Note
If you use the SEG utility to link C programs, you must use the CCLIB library.

Note also that SEG does not provide the improved performance and reduced linking time
that BIND provides. The CCLIB library is provided primarily for compatibility with
pre-Rev. 19.4 systems. Use of SEG and CCLIB is also required to build shared static-mode
programs. See the end of this chapter for more information about shared static-mode
programs.

Using the C_LIB Library
By default, each user has search rules in ENTRY$.SR, which is located in the top-level
directory SYSTEM. The following entries may appear in the ENTRY1SR file for a typical
system:

-PUBLIC SYSTEM_LIB$PRG.RUN
-PUBLIC TRANS_LIB$PRG.RUN
-PUBLIC TRANS_LIB$PRC.RUN
-PUBLIC SYSTEM_LIB$PRC.RUN
-PUBLIC APPLICATION_LIBRARY.RUN
-PUBLIC FTN.LIBRARY.RUN
-STATIC_MODE_LIBRARIES
-PUBLIC CC_LIBRARY.RUN
-PUBLIC ANSI_CC LIBRARY.RUN

Name Conflicts
Two complete versions of the C libraries exist: one for use by 64V-mode code, the other
for use by 32IX-mode code. In a dynamic linking environment (programs linked with
BIND), library calls made by a 64V-mode routine must link to the 64V mode libraries, and
library calls made by a 32IX-mode routine must link to the 32IX library. In addition,
calls to a C ubiary routine must link to uie C library rather than to a routine with the
same name in another language library. The compiler and linkers accomplish this
automatically, in the following manner:

• If a 64V-mode routine that calls printft) is linked with CCLIB using SEG, the
routine printf() from CCLIB is statically bound into the user program.

3-2

Linking C Programs

• If a 64V-mode routine that calls printf() is linked with C_LIB using BIND, the
symbol name printf is changed to CCSprintf and a dynamic link is made to
CCSprintf in the EPF libraries via the DYNTs in C_LIB.

• In 32IX mode, the names of all non-FORTRAN external definitions and references
(routines and common blocks) are changed by prepending the prefix G$ to the symbol
name in the user code. Thus, a call to printf() is treated by the compiler as a call
to the routine GSprintf. The 32IX library, which was written in C and compiled in
32IX mode, also has the GS prefix prepended, so either SEG or BIND resolves the
correct references from user code to library.

Because of the prefix handling described above, the number of significant characters in
external names varies with the addressing mode and linker used. The following table
summarizes these differences:

Number of
Linker Addressing Mode Significant Characters

SEG 64V
BIND 64V 32
SEG 32IX
BIND 32IX 30

As a user of the C language under PRIMOS, be aware of potential conflicts between C
library subroutine names and subroutine names in the FORTRAN and other libraries. To
avoid conflicts, always link C subroutines and libraries before you link subroutines and
libraries written in another programming language.

For example,
[BIND Rev. T3.0-23.0 Copyright (c) 1990 Prime Computer, Inc.]
: LO C_M0DULE_1.BIN
: LO C MODULE 2.BIN

L I C _ L I B / * R e s o l v e s c a l l s t o C s p e c i fi c
libraries */

LO FTN_M0DULE_1.BIN
LO FTN_M0DULE 2.BIN

L I / * R e s o l v e s c a l l s t o t h e s y s t e m
library PFTN.LIB */

3-3

C User's Guide

GUIDELINES FOR LINKING C PROGRAMS
Before linking C programs, observe the following guidelines:

• If you wish to use the command line argument feature of the C language, link
CCMAIN as the first library.

• If you link CCMAIN, BIND expects your main routine to be named main(); this
routine can be located anywhere in your program. If your main routine is not
named main(), use the MAIN subcommand to tell BIND which routine is your main
routine. See page 3-6 for information about the MAIN subcommand.

• If you do not link CCMAIN, BIND expects your main routine to be the first routine
in the first object file you link. However, this routine does not have to be named
main(). If your main routine is not the first routine in the first file you link, use
the MAIN subcommand to tell BIND which routine is your main routine.

• Whether or not you use CCMAIN, you must link the C_LIB DYNT library before
you link the PRIMOS system libraries.

Linking Programs
You may use either BIND or SEG to link C programs. Note, however, that use of BIND is
recommended on systems at Rev. 19.4 or later. Use of SEG is explained at the end of this
chapter.

The BIND utility creates a runfile called an Executable Program Format (EPF). You can
link most C programs using BIND by following this procedure:

1. Invoke the BIND utility with the BIND command. The system displays a colon (:)
prompt, indicating that you are now interacting with the BIND utility.

2. Issue the LIBRARY (LI) subcommand to link CCMAIN if you want to use the
command line argument features of the C language.

3. Issue the LOAD (LO) subcommand to link the main object file and any additional
object files from separately compiled subroutines.

4. Issue the LI subcommand to link the C_LIB library. If you get a BIND COMPLETE
message at this point, you may skip the next step.

5. Issue the LI subcommand to link system subroutines and functions called from
libraries. The system responds with a BIND COMPLETE message after the subroutines
and functions have been linked. If you do not receive the BIND COMPLETE message,
use the MAP subcommand to identify the modules that were not linked, and link
them. The BIND utility automatically appends a .RUN suffix to the end of the
executable file.

6. Issue the FILE command to exit from BIND. The FILE command also saves the
newly created executable file in your directory and returns you to PRIMOS command
level.

3-4

Linking C Programs

BIND Examples
The BIND utility allows you to create an EPF interactively or on a single command line.
Three linking sessions are illustrated in this section. Example 1 shows the use of BIND
without the CCMAIN runtime library. Example 2 shows the use of BIND with the
CCMAIN runtime library. Example 3 shows the use of command line arguments that
accomplish the BIND link in a single command without interactive usage of BIND.
Example 1:

OK. SLIST EXAMPLE1.CC
main()
{

pr intf("Goodbye, universe\n");
}

OK, CC EXAMPLEl -32IX /* Compile EXAMPLEl */
[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
0 Errors and 0 Warnings detected in 4 source lines.
OK, BIND EXAMPLEl /* Invoke the BIND utility */
[BIND Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]

L O E X A M P L E l / * L i n k o b j e c t fi l e * /
L I C _ L I B /
L I /

BIND COMPLETE
: FILE

Link EPF libraries */
Link system subroutines called

from program and C library,
if necessary. */

File (save) executable file in
directory and return to PRIMOS */

OK,

Example 2:
OK, SLIST EXAMPLE2.CC
main (argc, argv)

int argc;
char *argv [];

{
pr intf ("Number of arguments detected = 7.d.\n", argc);

}

OK, CC EXAMPLE2 -32IX /* Compile EXAMPLE2 */
[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
00 Errors and 00 Warnings detected in 6 source lines.

OK, BIND EXAMPLE2
[BIND Rev. T3.0-23

LI CCMAIN
LO EXAMPLE2
LI C_LIB

BIND COMPLETE
: FILE

OK,

/* Invoke the BIND utility */
Copyright (c) 1990, Prime Computer, Inc.]

/* Link CCMAIN runtime library */
/* Link object file */
/* Link EPF libraries */

/* File (save) executable file in
directory and return to PRIMOS*/

3-5

C User's Guide

Example 3:
OK, CC EXAMPLE3 -32IX
[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
00 Errors and 00 Warnings detected in 112 source lines.

OK, BIND EXAMPLE3 -LI CCMAIN -L0 EXAMPLE3 -LI C_LIB -LI
[BIND Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
BIND COMPLETE

Unreferenced Routines and Variables
A program may contain declarations for external routines or variables that are not
referenced in the program. In such cases, the PRIMOS C compiler behaves differently
depending on whether the -DEBUG option was invoked.

• If -DEBUG is invoked, the compiler retains information about all variables and
functions that it encounters. If any external variable or function is declared but not
referenced in the program, BIND will be unable to resolve the reference and will not
issue a BIND COMPLETE message.

• If -DEBUG is not invoked, the compiler ignores references to any variables or
functions that are declared but not referenced, and BIND will issue a BIND
COMPLETE message.

Using the MAP Subcommand
If BIND does not display the message BIND COMPLETE at the end of the linking procedure,
you can issue the MAP subcommand to check for any unresolved subroutine, program, or
common block references. The MAP subcommand of BIND has the following format:

MAP [pathname] [options]

If you specify pathname, the MAP subcommand writes the unresolved references to a file
instead of displaying them at your terminal. For example,

: MAP MYFILE /* Writes a BIND map of your program to a
file called MYFILE */

The -UNDEFINED option enables you to display a list of all unresolved references in your
program as follows:

: MAP -UNDEFINED /* Displays a list of all unresolved
references at your terminal */

Using the MAIN Subcommand
The MAIN subcommand tells BIND which routine is the main entrypoint of your program.
Use MAIN in either of the following situations:

• You are using CCMAIN, and your main routine is not named main().

• You are not using CCMAIN, and your main routine is not the first routine in the
first object file you link.

3-6

Linking C Programs

The MAIN subcommand has two formats, one for 64V mode and one for 32IX mode. If
you compiled your program in 64V mode, the format is

MAIN routine-name

where routine-name is the name of your main routine. If you compiled your program in
32IX mode, the format is

MAIN G$routine-name

That is, you must put the G$ prefix before the name of your main routine. (See page 3-3
for more information about the G$ prefix.)

Issue the MAIN subcommand after you load your source file(s), but before you link in the
C_LIB library.

For example, suppose that you are compiling the program TEST.C in 64V mode, that you
want to use command line arguments, and that your main routine (the only routine in
your program) is called test(). You can compile and link your program as follows:

OK, CC TEST
[CC Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
00 Errors and 00 Warnings detected in 16 lines and 594 include lines.
OK, BIND
[BIND Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]

LI CCMAIN
LO TEST
MAIN TEST

Main Program ECB is TEST at -0002/000236
: LI C_LIB
BIND COMPLETE
: FILE
OK,

As another example, suppose that you are compiling TEST2.C in 32IX mode, that you are
not using command line arguments, and that your main routine, called main(), is the last
routine in your source file. You can compile and link your program as follows:

OK, CC TEST2 -32IX
[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
00 Errors and 00 Warnings detected in 134 lines and 176 include lines.
OK, BIND
[BIND Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
: LO TEST2
: MAIN GSMAIN
Mam Program ECB is GSMAIN at -0002/000166
: LI C_LIB
BIND COMPLETE
: FILE
OK,

3-7

C User's Guide

Using the QUIT Command
If for some reason you have to exit prematurely from a BIND session, you can do so by
issuing the QUIT command. Simply type the following:

QUIT

The QUIT command aborts a BIND session and does not save the EPF. Before it returns
you to PRIMOS command level, BIND prompts you to make sure you really want to abort
the session. For example,

OK, BIND EXAMPLE
[BIND Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]

LI CCMAIN
LO EXAMPLE.BIN
LI C_LIB

BIND COMPLETE
: QUIT
EPF not filed, ok to quit? ('Yes', 'Y', 'No', 'N'):Y
OK,

Using the HELP Subcommand
The HELP subcommand of BIND is available in case you encounter problems while trying
to link a program. The HELP subcommand has the following format:

HELP [command—name] [-LIST]

When you issue the HELP subcommand followed by the name of a particular command,
BIND replies with concise online information describing the syntax and semantics of the
specified command. For example,

: HELP MAP
MAp [<map dest>] [<map option>]

will copy a mapfile to <map dest> with <map option>.
<map dest> may be a file, -TTY or -SPOOL.
<map option> may be one of the following:

-FULL, -RANGES, -BASE, -UNdefined, -FLAGS,
-Named_SYmbols.

If you issue the HELP subcommand followed by the -LIST option, BIND displays a list of
its subcommands at your terminal.

Executing an EPF
You can execute an EPF at PRIMOS command level by issuing the RESUME (R) command
followed by the program name. For example,

OK, RESUME EXAMPLEl.RUN

Goodbye, universe
OK,

3-8

Linking C Programs

If you linked your program using the CCMAIN library, you may follow the program name
with command line arguments. The RESUME command is not included in the argument
count (argc) or the argument vector (argv). For example, if your program, PROG.C, is

^include <stdio.h>

main(argc, argv)
int argc;
char *argv[] ;
{

in t i ;

printf("The arguments are: ");
for (i =0; i < argc; i+ +)

printf("ZsZc", argv[i], (l < argc-1) ? ' ' : '\n');
pr int f ("%d arguments\n", argc);

}

and your command line is
OK, RESUME prog how many args is this

the program will display
The arguments are: prog how many args is this
6 arguments
OK,

Loading C Programs With the SEG Linking Loader
You can load most C programs with the SEG loader using the following procedure:

1. Invoke the SEG utility with the SEG -LOAD command. The system displays a

prompt, indicating that you are now interacting with the SEG linker's VLOAD
subprocessor.

2. Issue the LIBRARY (LI) command to link CCMAIN if you want to use the UNIX-like
command line argument feature.

3. Issue the LOAD (LO) command to load the main object file and any additional object
file from separately compiled subroutines.

4. Issue the LI command to link the CCLIB runtine library. If you get a LOAD
COMPLETE message at this point, you may skip the next step.

5. Issue the LI command to link the system libraries. SEG then responds with a LOAD
COMPLETE message. If this message does not appear, then use the MAP 3 command to
identify the modules that were not linked, and link them. (See the SEG and LOAD
Reference Guide for more information.) The SEG loader automatically appends the
.SEG suffix to the runfile.

6. Issue the QUIT command to exit from SEG.

Note that you cannot use numerical command line arguments to a program if you use SEG
to link the program. When you execute the program, numerical command line arguments
are interpreted as arguments to the SEG command itself.

3 - 9

C User's Guide

Example:
OK, SLIST EXAMPLE.C
void main(argc, argv)

int argc;
char *argv[];

{
printf("Number of arguments is %d.\n", argc);

}

OK, CC EXAMPLE
[CC Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer. Inc.]
00 Errors and 00 Warnings detected in 6 source lines.

OK, SEG -LOAD
[SEG Rev. T3.0-23.0 Copyright (c) 1990. Prime Computer, Inc.]
$ LI CCMAIN
$ L0 EXAMPLE
S LI CCLIB
$ LI
LOAD COMPLETE
$ QU

OK, SEG EXAMPLE every breath you take
Number of arguments is 5.

OK, SEG EXAMPLE money for nothing
Number of arguments is 4.

CREATING SHARED C PROGRAMS
Shared programs written in C may be created using the methods outlined in Chapter 4,
Advanced SEG Techniques, of the SEG and LOAD Reference Guide. However, you must
observe some additional restrictions to insure that shared C programs execute successfully.

You must use the nonshared static-mode library, CCLIB. You may not use the DYNT
library, C_LIB.

If the C program to be shared does not use CCMAIN, then RUNIT may be used for the
shared program. In this case, you must ensure that segment 4000 is used as the data
segment. For example, if PROGRAM.BIN is the binary file for a program to be shared into
segment 2177, a possible SEG command sequence is as follows:

OK, SEG -LOAD
[SEG Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
$ COMMON ABS 4000 /* Gets data into segment 4000
$ MIX
$ SPLIT
$ S/LO PROGRAM.BIN 0 2177 4000 /* Shares into segment 2177

with data in segment 4000
$ D/LI CCLIB
$ D/LI
LOAD COMPLETE

3-10

Linking C Programs

$ RETURN
SHARE
FILE ID: EX
Creating EX2177
Creating EX4000
QUIT

If the C program to be shared uses CCMAIN, then RUNTT may not be used. In this case,
you must ensure that data is placed in some segment above 4000. For example, if
PROGRAM.BIN is the binary file for a program to be shared into segment 2177, a possible
SEG command sequence is as follows:

OK. SEG -LOAD
[SEG Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
$ S/LI CCMAIN 0 2177 4001 /* Shares into segment 2177 with

data in segment 4001
$ D/LO PROGRAM.BIN
$ D/LI CCLIB
$ D/LI_
LOAD COMPLETE
$ RETURN
SHARE
FILE ID: EX
Creating EX2177
QUIT

It is strongly recommended that you become completely familiar with Chapter 4, Advanced
SEG Techniques, of the SEG and LOAD Reference Guide, before attempting to create
shared programs. The examples above demonstrate only the use or nonuse of CCMAIN and
the placement of data. They are too trivial to demonstrate other features used in creating
shared programs.

3-11

USING THE C LIBRARY

This chapter explains how to use the non-ANSI C library. Following a discussion of the
supplied include files is a dictionary of C library functions and macros available under
PRIMOS.

The non-ANSI C library is the library you use when you do not link your program with
the ANSI_CCMAIN library. If you link your program with the ANSI_CCMAIN library,
you can call all the functions in the non-ANSI library that are not available in the ANSI
library. For a list of these functions, see the section entitled Nonstandard Library Functions
in Chapter 8.

Chapter 8 provides an alphabetical list of the ANSI C library functions, along with
information on how to write, compile, and link your program in order to call these
functions. For complete documentation of the ANSI C library functions, consult the second
edition of The C Programming Language, by Kernighan and Ritchie (1988).

Note
The library routines described in this chapter are different from those supplied with
PRIMIX. If you are developing programs under PRIMIX, consult the PRIMIX books
listed under Associated Documents in About This Book.

INCLUDE FILES

Many of the library functions require defined constants and keys in the calling sequence.
Other routines are actually implemented as macros, not functions. In addition, some
functions must be declared in the calling program because they return values that are not
of type int. Most of the constants, keys, and macros are defined in a set of include files
(also called header files), which are located in the top-level directory SYSCOM. The
return types of most noninteger functions are also declared in the include files. Table 4-1
lists the supplied C include files and the routines that use them.

4-1

C User's Guide

Using Include Files
To include one of these files in your program, enclose its name, in lowercase and without
the .INS.CC suffix, in angle brackets after the #include command. For example,

#include <math.h>

If you copy one of these files to another directory, you may remove the .INS.CC suffix or
not, as you wish. For more information about include files, see the description of include
search rules on page 2-2 and the description of the command line option -INCLUDE on page
2-21.

TABLE 4-1. C Include Files

Include File Routines That Use Include File

ASSERT.H.INS.CC

CTYPE.H.INS.CC

MATH.H.INS.CC

PRIME_ECS_CHARS.H.INS.CC
SETJMP.H.INS.CC

SIGNAL.H.INS.CC

STAT.H.INS.CC

STDIO.H.INS.CC

STRING.H.INS.CC

TERM.H.INS.CC

TIME.H.INS.CC

TIMEB.H.INS.CC

assert()

Character classification

Mathematical

None (see page 4-2)

setjmp() and longjmp()

signal()
stat() and fstat()

Input/output

String-handling

gterm() and sterm()
ctime() and localtime()
ftime()

Using the Extended Character Set
As of Rev. 21.0, Prime expanded its character set. The Prime Extended Character Set
(Prime ECS) includes characters with octal values from 0 through 0377. The include file
PRIME_ECS_CHARS.H.INS.CC allows you to use the ECS symbols listed in Appendix
F. The basic character set remains the same as it was before Rev. 21.0; it is the ANSI
ASCII 7-bit set (called ASCII-7), with the eighth bit turned on.

The C library functions and preprocessor macros have not been modified to recognize the
new extended character set. In particular, the character evaluation routines isasciK),
ispasciK), isalpha(), isdigit(), isgraph(), isloweK), isprint(), ispunct(), isspace(), and

4-2

Using the C Library

isupperO behave exactly as they did before Rev. 21.0. With the exception of isascii() and
ispascii(), these routines are essentially blind with respect to the 8th bit.

For example, the mnemonic UCUC_CHAR is defined to be octal 0133 in the include file
PRIME_ECS_CHARS.H.INS.CC. This character represents an uppercase U circumflex (U) in
the Extended Character Set. When passed UCUC_CHAR, however, isuppeK) returns false,
because isupper() treats the character octal 0133 the same as the character octal 0333,
which is the left bracket character ([).

DICTIONARY OF C LIBRARY FUNCTIONS AND MACROS
The library functions are contained in two EPF libraries, referenced through C_LIB, and in
the nonshared static-mode library CCLIB. (Use C_LIB and BIND whenever possible.) The
predefined macros are contained in the supplied include files.

Interpreting Definitions of Functions and Macros
Each description in this section contains a format, in boldface, that resembles C code. The
format shows the header file required by the function or macro, the parameter list, the
data types of the parameters, and the type of value returned. For example, the format
used for the ftell() function is

#include <stdio.h>
int ftell(filePointer)
FILE *filePointer;

This format indicates the following:

• You must include the stdio.h header file in your program when you use ftell().

• The ftell() routine returns an integer value.

• You must pass one parameter to ftell().

• The data type of the parameter is FILE *, where FILE is a typedef contained in the
stdio.h header file.

In the formats, the parameters are given names that are consistent with their use. When
several routines use the same kind of parameter, the same name is used in their formats.
For example, ftell() and fscanf() both have parameters called filePointer, because both
routines use a value returned by fopen() or fdopen(), which is of type FILE *. Similarly,
lseek() and read() both have parameters called filelD because both of those routines use a
value returned by open() or fileno(), which is of type int.

The discussion section that follows each definition contains a fuller explanation of the
parameters, return value, and behavior of the routine, including whether it is implemented
as a function or as a macro.

4-3

C Users Guide

Differences Between Functions and Macros
If a routine is implemented as a macro, rather than as a function, it can be undefined
with a preprocessor command of the form

#undef functionname

This is useful if you want to substitute a routine with the same name to replace the
library routine. In general, substituting a function for a macro reduces the size of the
executable program but increases execution time. Macros are expanded inline each time they
are encountered, whereas functions are expanded only once. However, a call to a function
takes longer than execution of inline code.

C Library Functions in Alphabetical Order
The following section describes the library functions contained in both C_LIB and CCLIB.
The library functions and their descriptions are listed alphabetically. Appendix D contains a
set of tables listing the library functions by the type of action performed. Chapter 7
contains a summary of differences between these functions and their counterparts in other
implementations, such as the UNIX operating systems.

▶ abort()

Raises the ABORTS condition, which, under normal circumstances, causes your program to
terminate.

abort()

PRIMOS prints the following message:

CONDITION ABORTS RAISED AT segment-number I half word-number

You have two ways to regain control after a call to abort().

• Use signal() in 32IX mode to catch ABORTS where the signal type is SIGABRT.

• Set up an on-unit for the ABORTS condition via a call to MKONSP. See page 5-21 in
this book, and the Subroutines Reference III, for more information about the
MKONSP subroutine.

Example: An example of using signal() to catch ABORTS follows.
OK, SLIST TMP1.C
^include <signa!.h>
ma in ()
{

void abort_handler();
signal(SIGABRT, abort_handler);
abor t () ;

}

4-4

Using the C Library

/* function that is called when abort() is invoked */
void
abort_handler(sig)

int sig;
{

printf("abort has been called again\n");
e x i t (l) ;

}
OK, CC TMP1 -32IX
[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
00 Errors and 00 Warnings detected in 17 lines and 115 include lines.
OK, BIND -LI CCMAIN -LO TMP1 -LI C_LIB
[BIND Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
BIND COMPLETE
OK, R TMP1
abort has been called again
OK,

▶ abs(), f abs()
Returns the absolute value of an integer and the absolute value of a floating-point number,
respectively.

int abs(integer)
int integer;

#include <math.h>
double fabs(floating)
double floating;

▶ access()

Checks a specified PRIMOS pathname to determine whether the specified access rights are
permitted.

#include <stdio.h>
int access(pathname, mode)
char ^pathname;
int mode;

Zero is returned if the rights are allowed. This function returns -1 either on any error or
if the access rights are not allowed. It sets errno (defined in stdio.h) to the file system
error code. The following modes are allowed:

0 The file exists.

2 The file exists and the process has write access.

4 The file exists and the process has read access.

4 - 5

C User's Guide

Combinations of access modes can be specified by summing the above values. For example,
6 indicates ERW (exist/read/write).

▶ acos()

Returns the arc cosine of its argument. The range of the returned value is from 0
through it radians.

#include <math.h>
double acos(x)
double x;

▶ asin()

Returns the arc sine of its argument. The range of the returned value is from - n/2
through 7T/2 radians.

#include <math.h>
double asin(x)
double x;

▶ assert()

Adds runtime diagnostics to programs. Available in 32IX mode only.

#include <assert.h>
void assert(expression)
int expression;

The assert() function is implemented as a macro. If the expression argument is false or
equal to zero when it is executed, then the information about the failure is written to the
standard error file named stderr. This information includes the text of the argument, the
name of the source file, and the source line number. The format of the message is:

Assertion failed: "expression", file "pathname", line line-number.

The abort() function is then called to terminate execution. If, however, the expression is
true, then assert() has no effect.

Another macro, NDEBUG, is referenced, but not defined, in the ASSERT.H.INS.CC file. If,
however, NDEBUG is defined in a user's program at the point in the source file where
<assert.h> is included, the assert macro will always be ignored, regardless of its evaluated
value.

4-6

f ^ U s i n g t h e C L i b r a r y

^ ^ ▶ a t a n ()
Returns the arc tangent of its argument. The range of the returned value is from -tt/2
through 7r/2 radians.

#include <math.h>
double atan(x)
double x;

▶ atan2()

Returns a value in the range -it through it. The returned value is the arc tangent of x/y,
where x and y are the two arguments.

#include <math.h>
double atan2(x, y)
double x, y;

▶ atof(), atoi(), atol()

^. Converts strings of ASCII characters to the appropriate numeric values.

#include <math.h>
double atof(inputPointer)
char *inputPointer;

int atoi(inputPointer)
char *inputPointer;

long atol(inputPointer)
char *inputPointer;

These functions recognize strings in various formats, depending on the returned data type.
The string for atof() may contain leading white space (space or tab). This is followed by
an optional sign, then a string of digits (optionally containing a decimal point), then an
optional exponent composed of an e or E, and then an (optionally signed) integer. The first
unrecognized character ends the string.

The string for atoi() and atol() may contain a series of leading tabs and spaces, then an
optional sign, and finally a series of digits (with no decimal point). The first unrecognized
character ends the string.

These functions do not account for overflows resulting from the conversion. In the 50
^^ Series implementation, long is synonymous with int; thus atoi() and atol() are equivalent.

r
4 - 7

C User's Guide

▶ atoi()

int atoi(inputPointer)
char *inputPointer;

For more information, see the atof() function.

▶ atol()

long atol(inputPointer)
char *inputPointer;

For more information, see the atof() function.

▶ bioSprimosfileunit()

#include <stdio.h>
int bio$primosfileunit(fileID)
int filelD;

The function bio$primosfileunit() allows you to determine PRIMOS file unit that is being
used to access a disk file. Given a filelD returned from open() or fileno(),
bio$primosfileunit() returns the corresponding PRIMOS file unit. For example,

#include <stdio.h>
int filelD;
FILE *filePointer;
int primosUnitl, primosUnit2;

filelD = open("aFileName", 2);
filePointer = fopen("anotherFileName", "w");
primosUnitl = bioSprimosfileun it(f ilelD);
primosUnit2 = bio$primosfileunit(fileno(filePointer));

▶ cabs()

#include <math.h>
double cabs(z)
struct {double x, y;} z;

For more information, see the hypot() function.

▶ calloc()

This function allocates an area of memory.

4 - 8

Using the C Library

char *calloc(numberOfElements, elementSize)
unsigned numberOfElements, elementSize;

The calloc() function allocates space for an array of numberOfElements elements of size
elementSize. If calloc() is unable to allocate the space, it returns 0.

For more information, see the malloc() function on page 4-34.

▶ ceil()

Returns as a double the smallest integer that is equal to or greater than its argument.

#include <math.h>
double ceil(x)
double x;

▶ cf ree()

int cfree(pointer)
char *pointer;

For more information, see the free() function.

▶ chdir()

Changes the current home directory (that is, attaches) to the specified PRIMOS pathname.

#include <stdio.h>
int chdir(pathname)
char ^pathname;

The target pathname is set as the new working directory. This function calls the PRIMOS
subroutine AT$ to do the attach. Zero is returned if the change of directory is executed
correctly. The routine returns -1 on any error and sets errno (defined in stdio.h) to the
file system error code.

▶ chrcheck()

Returns 1 if a character has been typed but not read. Returns 0 if no character has been
typed but not read. If you use chrcheck() instead of getc()/fgetc(), the program can
continue with other processing when there has been no terminal input. (See gterm() and
sterm().)

int chrcheck()

4-9

C User's Guide

▶ clearerr()

Resets the error and end-of-file indications for a file, so that ferroK) and feof() no longer
return a nonzero value. The clearerK) function is implemented as a macro.

#include <stdio.h>
clearer r(f ilePointer)
FILE *filePointer;

▶ close()

Closes a file specified by a filelD. The filelD is the return value from the open()
function.

#include <stdio.h>
int close(filelD)
int filelD;

If the file was opened for write or update, any buffered data is written to the file. The
function returns 0 if the file is successfully closed. On any error, the function returns a
-1 and the file system error code is set in the external variable errno (defined in stdio.h).
Use C library routines to close all files opened by C library routines.

▶ copy()

Copies a file to a new location.

#include <stdio.h>
int copy(oldPathname, newPathname)
char *oldPathname;
char *newPathname;

Zero is returned if the copy is executed correctly. The function returns -1 on any error
and sets errno (defined in stdio.h) to the file system error code. Both specified pathnames
may be PRIMOS pathnames.

▶ cos()

Returns the cosine of the argument expressed in radians.

#include <math.h>
double cos(x)
double x;

4 -10

Using the C Library

▶ cosh()

Returns the hyperbolic cosine of the argument.

#include <math.h>
double cosh(x)
double x;

▶ creat()

Opens a specified file and assigns specified access rights to the file. See open().
Note

You are strongly advised to use open() instead of creat() in the PRIMOS environment.
The open() function creates files opened for write or read/write if they do not
previously exist.

#include <stdio.h>
int creat(pathname, createMode)
char ^pathname;
int createMode;

If the specified file does not exist, it is created. If the file already exists, its length is
truncated to 0. The file is opened for binary read/write. If the call executes correctly,
the function returns an integer filelD. This filelD may then be supplied as an argument
to routines such as read(), write(), lseek() and close(). On any error, the function returns
-1 and sets errno (defined in stdio.h) to the file system error code. The values for
createMode are discussed with the setmod() and getmod() functions.

▶ ctime()

Converts a time in seconds since 00:00:00 Jan. 1, 1970 to a 30-byte ASCII string of the
form DD MMM YY HH:MM:SS <day-of-week>\n\0.

char *ctime(seconds)
int *seconds;

The argument to ctime() is a pointer to the time to be converted. (This can be obtained
from the time() routine.) ctime() returns a pointer to a 30-byte ASCII string, which
contains the result.

▶ cuserid()

Returns a pointer to a character string containing the user ID of the current process.

4-11

C User's Guide

#include <stdio.h>
char *cuserid(string)
char *string;

If the argument is null, the user name is stored internally. If not null, the argument
must point to a storage area of length L_cuserid (defined in stdio.h), and the name is
written into that storage area.

▶ delete()

Deletes a specified file.

#include <stdio.h>
int delete(pathname)
char ^pathname;

The file to be deleted may be specified by a fully qualified PRIMOS pathname. Zero is
returned if the file is deleted correctly. The function returns -1 on any error and sets
errno (defined in stdio.h) to the file system error code.

▶ ecvt(), fcvt()

Converts a double value to a NULL-terminated string of ASCII digits and returns the
address of the string.

char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *signf

In both functions, value is the double precision value to be converted, and ndigit is the
number of ASCII digits (not including the terminating NULL) to be used in the converted
string. Calls to these functions overwrite any existing string. The integer pointed to by
*decpt returns the position of the decimal point relative to the first character in the
returned string. A negative *decpt value means that the decimal point is to the left of
the returned digits, and a 0 means that the decimal point is immediately to the left of the
first digit. The integer pointed to by *sign is set to nonzero if value was negative;
otherwise, *sign is set to zero.

The following example uses the ecvt() function to convert a double value called dblval
and prints the information returned.

4-12

Using the C Library

/* ECVT EXAMPLE */
^include <stdio.h>
main()

{

char *ecvt();

double dblval; /* Value to be converted */

int sign, point; /* Output for sign, decimal point */

static char string[20]; /* Array for converted string */

dblval = -4.6389240e-4;

pr intf (" input value: 7.e\n", dblval);
strcpy(string, ecvt(dblval, 6, &point, &sign));
printf("converted string: %s\n", string);
printf("value is 2s\n", (sign) ? "negative" : "positive");
printf("decimal point is at position %d\n", point);

}

The output of the program is

input value : -4.6389240e-4
converted string: 463892
value is negative
decimal point is at position -3

▶ exi t()

Terminates a user process and returns to PRIMOS.

exit(status)
int status;

The exit() function returns the specified status to PRIMOS. This function also flushes all
buffers and closes all open files before performing the exit.

▶ exp()

Returns base e raised to the power given by the argument.

#include <math.h>
double exp(x)
double x;

4-13

C User's Guide

▶ f abs()

#include <math.h>
double fabs(floating)
double floating;

For more information, see the abs() function.

▶ fclose()

Closes a file, flushing any buffers associated with the file pointer.

#include <stdio.h>
int fclose(filePointer)
FILE *filePointer;

This function returns 0 on success. If the buffered data cannot be written to the file, or
if the file control block is not associated with an open file, fclose() returns EOF (a
preprocessor constant defined in stdio.h).

▶ f cvt()

char *fcvt(value, ndigit, decpt, sign)
double value;
int ndigit, #decpt, *sign;

For more information, see the ecvt() function.

▶ f dopen()

Associates a file pointer with a filelD returned by the open() or creat() functions.

#include <stdio.h>
FILE *fdopen(fileID, accessMode)
int filelD;
char *accessMode;

The fdopen() function allows you to access a file originally opened by a call to open() or
creat() as if it had been opened by a call to fopen(). Generally, a file can be accessed
either by filelD if opened by open() or creat(), or by filePointer if opened by fopen().
A file cannot be accessed by both filelD and filePointer.

The first argument to fdopen() is the file ID returned by open() or creat(). The second
argument is the same as the second argument to fopen(). This access mode must agree
with the original mode with which the file was opened. If the operation is completed

4-14

Using the C Library

successfully, a nonzero file descriptor is returned. The fdopen() function returns NULL
(defined in stdio.h) on any error and sets errno (defined in stdio.h) to the file system error
code. The values of accessMode are discussed with fopen().

▶ f dtm()

Returns the modification time for the specified file. The time is as it would be returned
by the time() function.

#include <stdio.h>
int fdtm(pathname)
char *pathname;

The fdtm() function returns -1 on any error and sets errno (defined in stdio.h) to the file
system error code.

▶ feof()

Tests a file to see if the end of file has been reached. If so, feof() returns a nonzero
integer; if not, it returns 0. The feof() function is implemented as a macro.

#include <stdio.h>
int feof(filePointer)
FILE *filePointer;

A call to this function continues to return a nonzero integer until the file is closed or
until clearerK) is called.

▶ f erroK)

Returns a nonzero integer if an error occurred while the file was being written or read.

#include <stdio.h>
int ferror(filePointer)
FILE *filePointer;

A call to this function continues to return a nonzero integer until the file is closed or
until clearerr() is called. The ferroK) function is implemented as a macro.

▶ f exists()

Returns 1 if the specified PRIMOS pathname exists and 0 if it does not.

4-15

C User's Guide

#include <stdio.h>
int fexists(pathname)
char ^pathname;

The fexists() function returns -1 on any error and sets errno (defined in stdio.h) to the file
system error code. The pathname may terminate with either a filename or a directory
name.

▶ f f lush()

Writes out any buffered information for the specified file. Output files are normally
buffered only if they are not directed to a terminal.

#include <stdio.h>
int fflush(filePointer)
FILE *filePointer;

The smallest data item that can be written to a PRIMOS disk file is a 16-bit item; thus, if
there is an odd number of bytes in the buffer when fflush() is called, the last byte is not
dumped to disk. When fflush() returns, the buffer still contains the leftover byte. In
order to force this byte out to disk with a zero-padding byte, the file may be closed. The
fflush() function returns 0 when it is successful. If the buffered data cannot be written
to the file, or if the file control block is not associated with an output file, fflush()
returns EOF (a preprocessor constant defined in stdio.h).

▶ fgetc()

#include <stdio.h>
int fgetc(filePointer)
FILE *filePointer;

For more information, see the getc() function.

▶ fgetname()

#include <stdio.h>
char *fgetname(filePointer, buffer)
FILE *filePointer;
char *buffer;

For more information, see the getname() function.

4-16

Using the C Library

▶ f gets()

#include <stdio.h>
char *fgets(string, maxline, filePointer)
char *string;
int maxline;
FILE *filePointer;

For more information, see the gets() function.

▶ f ileno()

Returns an integer filelD. The fileno() function is implemented as a macro.

#include <stdio.h>
int fileno(filePointer)
FILE *filePointer;

The argument filePointer is a file pointer returned by fopen().

▶ f loor()

Returns (as a double) the largest integer that is less than or equal to its argument.

#include <math.h>
double floor(x)
double x;

▶ fopen()

Opens a file, returning the address of a FILE structure, denoting a file control block.

#include <stdio.h>
FILE *fopen(pathname, accessMode)
char ^pathname, *accessMode;

The file pointer (type FILE *) returned by fopen() may be used as an argument to the
following functions: clearerrC), fcloseC), feof(), ferroK), fflush(), fgetc(), fgetname(),
fgets(), filenoC), fprintfC), fputc(), fputs(), fread(), freopen(), fscanfC), fseek(), fstat(),
ftell(), fwriteC), getc(), geth(), getname(), getw(), putc(), puth(), putw(), rewind(),
setbuf(), and ungetc().

The file control block may be freed with the fcloseC) function or by default on normal
program termination (a call to exit()).

4-17

C User's Guide

The first argument to fopen() is a character string containing a valid PRIMOS pathname.
The second argument, access Mode, is one of the character strings listed in Table 4-2.

Output may not be directly followed by input without an intervening call to fflush() or
to one of the file positioning functions fseek() and rewind(). Similarly, input may not be
directly followed by output without an intervening call to the fflush() function or to a
file positioning function, unless the input operation encounters the end of file.

An ASCII file is a file in PRIMOS standard text format, that is, an editable file. Space
compression is used in an ASCII file, and the new line (\n) at the end of a line may be
padded with a NULL (\0) byte to make each record contain an even number of bytes. A
binary file can contain arbitrary data with no translation done for either input or output.
Data written to ASCII files may be changed/compressed as it is actually written to disk;
however, as the file is read back in, these changes are undone and the data appears exactly
as it was written. The disk format of a binary file is exactly what was written.

The r or i character strings open an existing file for input. Conversely, the w or o
character strings open a file for output. If the file does not exist, fopen() creates a new
file. If the file exists, fopen() truncates the file. The wa and oa character strings are
virtually the same as w and o, except that the initial file position is set to the end of file
(no truncation occurs).

TABLE 4-2. Character Strings for fopen

Character String Action Performed

r R e a d s A S C I I

w W r i t e s A S C I I

i R e a d s b i n a r y

o W r i t e s b i n a r y

w a Wr i t e s A S C I I a p p e n d

o a Wr i t e s b i n a r y a p p e n d

i + U p d a t e s b i n a r y

o+ Updates binary (truncate when opening)
oa+ Updates binary append

The " i +" character string opens a file for read/write with the initial position at the
beginning of the file. The "o + " character string opens a file for read and write and
initially truncates the file. The "oa + " character string opens a file for read and write
with the initial position at the end of file.

4-18

Using the C Library

Note
The smallest unit of data that can be written to a PRIMOS disk file is a 16-bit
entity. The f routines (for example, fread() and fopen()) attempt to hide this fact
from the user. (See the comments in the fflush() documentation.)

If fopen() is forced to create a file (opening a write file that does not previously exist), it
creates a DAM file.

The function returns a null pointer (defined in stdio.h) to signal errors. Use C library
routines to close all files opened with C library routines.

▶ f printf()

#include <stdio.h>
int fprintf(filePointer,

formatSpecification [, outputSource,. . .])
FILE *filePointer;
char *formatSpecification;

For more information, see the printf() function.

▶ f putc()

#include <stdio.h>
int fputc(character, filePointer)
char character;
FILE *filePointer;

For more information, see the putc() function.

▶ f puts()

int fputs(string, filePointer)
char *string;
FILE *filePointer;

For more information, see the puts() function.

▶ f read()

Reads a specified number of items from the file.

4-19

C User's Guide

#include <stdio.h>
int freadCpointer, sizeOfltem, numberOfltems, filePointer)
char ^pointer;
int numberOfltems, sizeOfltem;
FILE *filePointer;

The first argument, pointer, points to a buffer into which data is read from the file
pointed to by the fourth argument, filePointer. The reading of the specified items begins
at the current location in the file. The items read are placed in storage beginning at the
location given by the first argument. The second argument, sizeOfltem, specifies the size
of an item in bytes. The function returns the number of items actually read. If fread()
encounters the end of file or an error, it returns 0 (not EOF).

▶ free(), cfree()

Makes available for reallocation the area allocated by a previous calloc(), malloc(), or
realloc() call.

int free(pointer)
char *pointer;

int cfree(pointer)
char *pointer;

The argument is the address returned by a previous call to mallocC), calloc(), or realloc().
The functions return 0 if the area is successfully freed, -1 if an error occurs.

Note
The C library's routines for dynamic memory management (malloc(), calloc(),
realloc(), free(), and cfree()) are designed for use only with each other. If you
allocate memory with code written in another language, do not deallocate it with a C
routine. Similarly, if you allocate memory with a C routine, do not deallocate it
with code written in another language.

▶ freopenC)

Substitutes the file specified by a pathname for the open file addressed by a file pointer.
The latter file is closed.

#include <stdio.h>
FILE *freopen(pathname, accessMode, filePointer)
char *pathname, *accessMode;
FILE *filePointer;

The freopen() function is typically used to associate one of the predefined names stdin,
stdout, or stderr with a file.

4-20

Using the C Library

The first two arguments to freopen() have the same meaning as the arguments to fopen().
The third argument is a pointer to a FILE structure, denoting a currently open file. After
the function call, the open file is closed.

If the attempt to reopen fails, the function returns a null pointer (defined in stdio.h>,
otherwise, the function returns the address of the reopened file control block, which is the
third argument.

▶ f rexpC)

Returns the mantissa and exponent of a double argument.

#include <math.h>
double frexp(value, eptr)
double value;
int *eptr;

The mantissa is a double, and its magnitude is less than one. The second argument is a
pointer to an int, to which frexp() returns an integer n such that value = mantissa * 2n.

▶ f rwlock()

Returns the current read/write lock for the specified file. The read/write lock is discussed
in the PRIMOS Commands Reference Guide under the commands COPY and RWLOCK.

#include <stdio.h>
int frwlock(pathname)
char ^pathname;

The frwlock() function returns -1 on any error and sets errno (defined in stdio.h) to the
file system error code.

The valid return values are

0 System default

1 N readers or one writer

2 N readers and one writer

3 N readers and N writers

4-21

C User's Guide

▶ f scanf ()

#include <stdio>
int f scanf (filePointer, formatSpecification [, inputPointer,. . .])
FILE *filePointer;
char *formatSpecification;

For more information, see the scanf() function.

▶ f seekC)

Positions the file to the specified byte offset in the file.

#include <stdio.h>
int fseek(filePointer, offset, direction)
FILE *filePointer;
int offset, direction;

The argument direction is an integer indicating whether the offset is measured from the
current read or write address (l), from the beginning of the file (0), or from the end of
the file (2). The fseek() function returns EOF (a preprocessor constant defined in stdich)
for improper seeks, 0 for successful seeks. To position into ASCII files that have been
opened for writing or updating, a previous call to ftelK) must have been made to obtain a
valid byte position in the disk file. The only operations that can be performed successfully
on an ASCII file opened for reading are seeks to the beginning or end of the file where
the offset is zero. Any other operation causes fseek() to return EOF. Arbitrary seeks on
binary files are permitted. See the fopen() description.

Note
Under PRIMOS, ASCII text files are stored on disk with as many as 128 spaces stored
in only two bytes. The C library routines generally hide this fact by compressing
the data on the way out to disk and expanding it on the way in from disk. This
compression can cause problems if you update a file after it has been written. For
example, you cannot write the string "abcedf" on top of six spaces in an ASCII
disk file without overwriting data following the spaces, because only two bytes on
the disk file are used to store six spaces. Additionally, space compression causes
problems when reading ASCII files because the 32-bit offset is not large enough to
always store a unique file position. These problems are, of course, solved by using
binary files rather than ASCII files.

▶ f size()

Returns the size of a specified file in bytes.

int fsize(pathname)
char *pathname;

4-22

Using the C Library

The fsize() function opens the file and positions to the end of file to perform this
calculation. (This can be a time-consuming task for large SAM files.) The function
returns -1 on any error and sets errno (defined in stdio.h) to the file system error code.

▶ f stat()

This function is equivalent to the following stat() call:

stat(fgetname(filePointer, charBuf), buffer)

#include <stdio.h>
#include <stat.h>
int fstatCfilePointer, buffer)
FILE *filePointer;
struct stat * buffer;

The information returned by fstat() is virtually identical to the information returned by
stat(y, however, fstat() returns the status information for an already open file, while stat()
returns the same information for a specified pathname. The first argument to fstat() is a
file pointer as returned by the fopen() routine. See the stat() function for more
information.

▶ f tellC)

Returns the current byte offset to the specified stream file.

#include <stdio.h>
int ftell(filePointer)
FILE *filePointer;

The offset is measured from the beginning of the file. This function is useful only for
obtaining an offset that is later passed to fseek(). Any error causes ftellO to return EOF
(a preprocessor constant defined in stdio.h). Note that ftell() cannot reliably measure offsets
into ASCII files opened for reading, and will return EOF. For more information, see the
fseek() description.

▶ f time()

Returns the elapsed time since 00:00:00, Jan. 1, 1970, in a timeb structure. The structure
layout is as follows (structure defined in timeb.h):

s t ruc t t imeb { in t t ime; / * Time in seconds * /
sho r t m i l l i tm ; / * F rac t i ona l m i l l i seconds * /

}

short timezone; /* Always zero */
short dstflag; /* Always zero */

4-23

C User's Guide

#include <timeb.h>
ftime(timePointer)
struct timeb *timePointer;

▶ ftype()

Returns the type of a specified file.

#include <stdio.h>
int ftype(pathname)
char ^pathname;

The ftype() function returns -1 on any error and sets errno (defined in stdio.h) to the file
system error code. The valid return values are

Value Meaning
0 SAM file
1 DAM file
2 SAM segment directory
3 DAM segment directory
4 Directory
6 Access Category (ACAT)
7 CAM file

▶ fwriteC)

Writes a specified number of items to the file.

#include <stdio.h>
int fwrite(pointer, sizeOfltem, numberOfltems, filePointer)
char *pointer;
int numberOfltems, sizeOfltem;
FILE *filePointer;

The first argument, pointer, points to a buffer from which data items are written.
sizeOfltem is the size in bytes. The fourth argument, filePointer, is the pointer that was
returned by the function fopen() or fdopen(). The writing begins at the current location
in the file. The function returns the number of items actually written. It returns 0 if
there is an error.

▶ g$amiix()

Determines if the current machine is capable of executing C 32IX-mode code.

4-24

Using the C Library

int g$amiix()

This routine is an integer function that returns true (l) if the current machine is capable
of executing C 32IX-mode code; it returns false (0) otherwise. Call g$amiix() from 64V-
mode C code only.

▶ getc(), f getcC)

Returns the next character as an int from a specified file.

#include <stdio.h>
int getc(filePointer)
FILE *filePointer;

#include <stdio.h>
int fgetc(filePointer)
FILE *filePointer;

The getc() function positions the file after the character is returned, and the next getcC)
call takes the character from that position. The getc() function is implemented as a macro.
The argument, filePointer, is the pointer that was returned by the function fopen() or
fdopen().

The fgetc() function is almost identical to the getc() function; however, the fgetc()
function generates an actual function call and not a macro substitution.

Normally, when a program is reading from a terminal, input is not available until the user
types a newline. If the terminal is in raw mode, however, the program can read each
character as it is typed. See sterm(), gterm(), and chrcheck().

▶ getcharC)

Returns the next character from the standard input and is identical to using getc(stdin).
This function is implemented as a macro.

#include <stdio.h>
int getcharC)

▶ gethC)

Similar to getw(), except that the next two characters are read from the file and returned
as an int. (Sign extension occurs.)

#include <stdio.h>
int geth(filePointer)
FILE *filePointer;

4-25

C User's Guide

The argument, filePointer, is the pointer that was returned by the function fopen() or
fdopen(). The getc(), fgetc(), getchar(), getw(), and geth() functions all return EOF on
end of file or error, but because EOF is an integer, you must use feof() and ferroK) to
check the success of getw() or geth().

▶ getmod()

Returns the access available to the current user to a specified file or directory.

#include <stdio.h>
int getmodCpathname, user)
char ^pathname, *user;

If the specified file is ACL protected, all return bits are valid. If the file is password
protected, then only the read, write, and delete bits are valid. The second argument is
usually ignored in the current implementation. The only exception is that for a file in a
password protected directory, the user name can be specified as __non-owner ; then
getmod() returns the access held by a nonowner to the file. The function returns -1 on
any error and sets errno (defined in stdio.h) to the file system error code.

getmod() returns the following bit settings:
Bit Setting Meaning

01 Read
02 Write
04 Use

010 List
020 Add
040 Delete

0100 Protect

▶ getnameC), f getname()

Returns the PRIMOS pathname associated with an integer filelD (getname()) or a file
pointer (fgetname()).

#include <stdio.h>
char *getname(fileID, buffer)
int filelD;
char * buffer;
#include <stdio.h>
char *fgetname(filePointer, buffer)
FILE *filePointer;
char * buffer;

4-26

Using the C Library

filelD is the integer returned by open(), creat(), or fileno(). filePointer is the pointer
returned by fopen() or fdopen(). Both functions place the filename in buffer and return
the address of buffer. The filename is padded with one NULL to form a correct C string.
The buffer must be at least 129 bytes in length. If an error occurs, both functions return
NULL and set errno (defined in stdio.h) to the file system error code.

▶ getsC), f getsC)

Reads a line from a specified file.

#include <stdio.h>
char *gets(string)
char *string;

#include <stdio.h>
char *fgetsCstring, maxline, filePointer)
char ^string;
int maxline;
FILE *filePointer;

The gets() function reads a line from standard input into the buffer specified by string.
This function replaces the newline character (\n) with a NULL (\0). The gets() function
returns its argument, which is a pointer to a character string containing the acquired line.
If an error occurs or if an EOF is encountered before the newline character is encountered,
the function returns NULL (defined in stdio.h). The fgets() function reads from the file
until it has read a newline character (\n) or until it has read maxline - 1 characters,
whichever comes first. The function puts the characters into the buffer string. filePointer
is a value of type FILE * that was returned by fopen() or fdopen().

The fgets() function terminates the line with NULL (\0). Unlike gets(), fgets() places the
newline that terminates the input record into the user buffer as it fits. On end of file or
error, the functions return NULL (defined in stdio.h); otherwise, they return the address of
the first character in the line.

▶ getwC)

Returns the next four characters from a specified input file as an int value. No type
conversion is performed.

#include <stdio.h>
int getw(filePointer)
FILE *filePointer;

If the getw() function encounters an end of file (EOF) during the retrieval of any of the
four characters, the EOF (a preprocessor constant defined in stdio.h) is returned, and the
four characters are lost.

4-27

#define BREAK 01
#define CRLF 02
#define ECHO 04
#define RAW 010
#define XON 020

C User's Guide

▶ gtermC)

Obtains the current terminal characteristics and puts them in the specified structure.

#include <term.h>
void gtermC buffer)
struct term * buffer;

All terminal attributes can be set with the sterm() function. Read and Write mode
(RAW) indicates that each character can be read (with fgetc()) as it is typed without
waiting for a terminating line feed. The structure and flag bits (defined in term.h) are as
follows:

/ * F l a g b i t s * /

/ * B r e a k e n a b l e d ? * /
/* Echo LF after CR? */
/ * Echo cha rac te r s? * /
/* Single character reads? */
/* Flow control enabled */

s t r u c t t e r m { s h o r t t t _ fl a g s ; / * F l a g b i t s * /
char t t_e rase ; / * E rase charac te r * /
c h a r t t _ k i l l ; / * K i l l c h a r a c t e r * /

} ;

▶ gvgetC)

Returns a pointer to a static character array that contains the value of the named PRIMOS
global variable set by the gvset() routine or the PRIMOS command DEFINE_GVAR.

#include <stdio.h>
char *gvget(name)
char *name;

Returns 0 on any error or if the variable is undefined, and it sets errno (defined in
stdio.h) to the file system error code. gvget() is an interlude to the PRIMOS subroutine
GV$GET.

▶ gvsetC)

The gvsetC) function changes the value of a PRIMOS global variable.

#include <stdio.h>
int gvsetCname, value)
char *name, *value;

If the specified name does not exist, the name is created as a global variable. Zero is
returned if the function is executed successfully. gvset() returns -1 on any error and sets

4-28

Using the C Library

errno (defined in stdio.h) to the file system error code. This function is an interlude to
the PRIMOS subroutine GVSSET.

▶ hypotC), cabs()

hypot() returns sqrt(x2 + y2). cabs() returns the complex absolute value sqrt(z.x2 + z.y2).

#include <math.h>
double hypotCx, y)
double x, y;

double cabs(z)
struct {double x, y;} z;

▶ indexC)

#include <string.h>
char *index(string, character)
char *string, character;

For more information, see the strchrC) function.

▶ isalnumC)

Returns a nonzero integer if its argument is one of the alphanumeric ASCII characters;
otherwise, it returns zero. This function is implemented as a macro.

#include <ctype.h>
int isalnum(character)
char character;

▶ isalphaC)

Returns a nonzero integer if its argument is an alphabetic ASCII character; otherwise, it
returns zero. This function is implemented as a macro.

#include <ctype.h>
int isalphaC character);
char character;

4-29

C User's Guide

▶ isasciiC)

Returns a nonzero integer if its argument is any ASCII character (value less than 0400
octal); otherwise, it returns zero. This function is implemented as a macro.

#include <ctype.h>
int isascii(character)
char character;

▶ isattyC)

Returns 1 if the current process is running from a terminal; zero if not.

int isattyCfilelD)
int filelD;

The required argument is a dummy argument; it need not be the actual filelD of the
process.

iscntrlC)

Returns a nonzero integer if its argument is an ASCII DEL character C0177 or 0377 octal)
or any nonprinting ASCII character (code between 00 and 040 octal or between 0200 and
0240 octal). Zero is returned otherwise. This function is implemented as a macro.

#include <ctype.h>
int iscntrlC character)
char character;

▶ isdigitC)

Returns a nonzero integer if its argument is a decimal digit character in the range 0
through 9. Returns zero if not. This function is implemented as a macro.

#include <ctype.h>
int isdigit(character)
char character;

▶ isgraphC)

Returns a nonzero integer if its argument is a graphic ASCII character, otherwise, it returns
zero. Graphic characters are not control characters and are not the space characters C040
and 0240). This function is implemented as a macro.

4 -30

Using the C Library

#include <ctype.h>
int isgraph(character)
char character;

▶ islowerC)

Returns a nonzero integer if its argument is a lowercase alphabetic ASCII character;
otherwise it returns zero. This function is implemented as a macro.

#include <ctype.h>
int islowerC character)
char character;

▶ ispasciiC)

Returns a nonzero integer if its argument is any valid Prime ASCII character in the range
0200 through 0377 octal; otherwise, it returns zero. This function is implemented as a
macro.

#include <ctype.h>
int ispascii(character)
char character;

▶ isprintC)

Returns a nonzero integer if its argument is any ASCII printing character. ASCII printing
characters have values from 040 through 0176 octal and from 0240 through 0376 octal.
The routine returns zero otherwise. This routine is implemented as a macro.

#include <ctype.h>
int isprintCcharacter)
char character;

▶ ispunctC)

Returns a nonzero integer if its argument is an ASCII punctuation character, that is, if it is
nonalphanumeric and greater than 040 and less than 0177 octal or greater than 0240 and
less than 0377 octal. It returns zero otherwise. This function is implemented as a macro.

#include <ctype.h>
int ispunct(character)
char character;

4-31

C User's Guide

▶ isspaceC)

Returns a nonzero integer if its argument is white space, that is, if it is an ASCII space,
tab, RETURN, form feed, or newline character. It returns zero otherwise. This function is
implemented as a macro.

#include <ctype.h>
int isspaceC character)
char character;

▶ isupperC)

Returns a nonzero integer if its argument is an uppercase alphabetic ASCII character;
otherwise, it returns zero. This function is implemented as a macro.

#include <ctype.h>
int isupperC character)
char character;

▶ isxdigitC)

Returns a nonzero integer if its argument is a hexadecimal digit (0-9, A-F, a-f); otherwise,
it returns zero. This function is implemented as a macro.

#include <ctype.h>
int isxdigit(character)
char character;

▶ ldexp()

Returns the following quantity: value times 2 to the power of exp.

#include <math.h>
double IdexpCvalue, exp)
double value;
int exp;

▶ localtime()

Converts a time (as returned from the time() function) to a time structure.

#include <time.h>
struct tm *localtimeCseconds)
int ^seconds;

4-32

Using the C Library

The localtimeC) function returns a pointer to the time structure; successive calls overwrite
the structure. The following is the structure layout (structure defined in time.h):

struct tm { int tm_sec,
tm_min,
tm_hour,
tm_mday,
tm_mon,
tm_year,
tm_wday,
tm_yday,
tm_isdst;

} ;

* seconds */
* minutes */
* hours (24) */
* day in month (1-31) */
* month (0-11) */
* year (00-99) */
* day in week (0-6) */
* day in year (0-365) */
* 0 */

▶ l o g ()

Returns the natural (base e) logarithm of the argument, which must be of type double.
(The returned value is also double.)

#include <math.h>
double log(x)
double x;

▶ loglOC)

Returns the base 10 logarithm of the argument, which must be of type double.
returned value is also double.)

(The

#include <math.h>
double loglOCx)
double x;

▶ longjmpC)

#include <setjmp.h>
longjmpCenv, val)
jmp_buf env;

For more information, see the setjmpC) function.

r
r

▶ lsdirC)

Returns a pointer to a static character array containing the next filename in an open
directory.

4-33

C User's Guide

#include <stdio.h>
char *lsdirCfileID)
int filelD;

The directory is specified by the integer value filelD returned from open(), creat(), or
filenoC). If you pass the negative integer -filelD, lsdir() positions the directory to entry 0
before the next name is read. The function returns 0 on any error and sets errno (defined
in stdio.h) to the file system error code.

▶ lseekC), seekC)

Positions a file to an arbitrary byte position and returns the new position as an int.

#include <stdio.h>
int lseekCfilelD, offset, direction)
int filelD, offset, direction;

#include <stdio.h>
int seekCfilelD, offset, direction)
int filelD, offset, direction;

These functions set the position relative to the beginning of the file {direction = 0 or 3),
the current position (direction = 1 or 4), or the end of file (direction = 2 or 5). The
target byte position is specified by the offset argument, directions of 3, 4, and 5 cause
the offset to be multiplied by 2048 before the positioning is performed. The size of a
physical disk record is 2048 bytes on 50 Series systems, and is, thus, system dependent.
The target file is specified by a filelD returned from open().

For disk devices, lseek() returns the new byte offset within the file, or -1 on any error.
For magnetic tape devices, lseek() returns 0 if the operation was successful and -1 on error.
In either error case, the external variable errno (defined in stdio.h) is set to the PRIMOS
error code.

seek() and lseek() are valid operations for disk files and magnetic tape devices, but not for
TTY devices or asynchronous lines. lseek() requests for tape devices are specified in records
instead of bytes. 0 and 1 are the only direction keys allowed for lseek() on magnetic tape
devices. Their meanings are as follows:

0 Record from beginning of tape
1 Record from current position

For more information, see the description of the open() function on page 4-36.

▶ mallocC)

Allocates a contiguous area of memory whose size in bytes is supplied as an argument.

4-34

Using the C Library

char *mallocCsize)
unsigned size;

The malloc() function returns the address of the first byte, which is aligned on a 16-bit
boundary. A value of 0 is returned if malloc() is unable to allocate enough memory.

When you call the library routines malloc() and calloc() in 32IX mode, you must declare
them as returning pointer types.

Note
The C library's routines for dynamic memory management (malloc(), calloc(),
realloc(), free(), and cfree()) are designed for use only with each other. If you
allocate memory with code written in another language, do not deallocate it with a C
routine. Similarly, if you allocate memory with a C routine, do not deallocate it
with code written in another language.

▶ mkdirC)

Creates a specified directory (this may be a PRIMOS pathname).

#include <stdio.h>
int mkdirC pathname)
char ^pathname;

The new directory has default protections, which can be altered with setmod(). mkdir()
returns 0 if the directory is created successfully. The function returns -1 on any error and
sets errno (defined in stdio.h) to the file system error code.

▶ modf ()

Returns the positive fractional part of a specified double and stores the integer part in the
double pointed to by integerPart.

#include <math.h>
double modf (value, integerPart)
double value, *integerPart;

▶ moveC)

Moves a specified file to a specified new location.

#include <stdio.h>
int moveColdPathname, newPathname)
char *oldPathname, *newPathname;

4-35

C User's Guide

This function performs a change of name if the old and new pathnames refer to the same
directory; otherwise, it performs a copy and delete operation. The function returns -1 on
all errors and sets errno (defined in stdich) to the file system error code.

▶ openC)

Opens a specified file.

#include <stdio.h>
int openCpathname, openMode,

[fileUnit])

int openCpathname, openMode,
protocol, config, lword)

int openCpathname, openMode,
magTapeOptions)

char *pathname;
int openMode;
int fileUnit;
char *protocol;
int config, lword;
char *magTapeOptions;

If successful, open() returns an integer filelD. You use filelD as an argument to the
following functions: bio$primosfileunit(), close(), fdopen(), fgetname(), getname(), lsdir(),
lseek(), read(), seek(), tell() and write().

If unsuccessful, open() returns -1 and the global variable errno (defined in stdio.h) is set to
the PRIMOS error code.

pathname is of type char *. It may be specified by any of the following character
strings:

pathname
A normal PRIMOS style pathname specifying a disk file. The special name
"_current-dir_" may be used to open the current directory for reading. All keys are
ignored in this case. For compatibility with previous releases, you may use
"_current-ufd_" as a synonym for "_current-dir_".

"Device=TTY"
Device type TTY, specifying the current user's terminal.

"Device=ASYNCxxx"
Device type ASYNC, specifying an assignable asynchronous line, where xxx is the decimal
line number. The asynchronous line is assigned by the open() call and unassigned by its
corresponding close() call. You can disable automatic assigning and unassigning by using
the 04000 additive key. Use the 01000000 additive key to disable unassigning only.

4 -36

Using the C Library

"Device=MTx"
Device type tape drive, specifying an available magnetic tape device, where x is the tape
unit number. The tape drive is assigned by the open() call and unassigned by its
corresponding close() call. You can disable automatic assigning and unassigning by using
the 04000 additive key. Use the 01000000 additive key to disable unassigning only.
PRIMOS prints a message when a tape device is assigned or unassigned by the C
libraries. For example, opening and closing MTO produces the messages Device MTO
assigned and Device MTO released.

The values for the openMode argument include several additive keys. These keys are octal
numbers representing bit patterns that can be ORed together with other additive keys. You
must retain the initial zero so that the C compiler interprets them as octal numbers. The
values for openMode appear in Table 4-3.

TABLE 4-3. Values for the openMode Argument of open

Value Meaning

-1

-3

0100

0200

0400

Open for reading.

Open for writing. A binary file opened for write only is actually
opened for read/write because for certain I/O operations, PRIMOS must
read in a halfword (16-bit) quantity to write out a byte quantity. To
write one byte to an existing file, one halfword must be read in so
that the halfword containing the new character can be written.

Open for reading and writing,
devices.

This key is not valid for magnetic tape

Open for reading. The compiler assumes that the disk file is already
open on PRIMOS file unit fileUnit. No additive keys are allowed when
this openMode is used. Whenever possible, use additive key 02000
rather than openMode -1.

Open for writing. The compiler assumes that the disk file is already
open on PRIMOS file unit fileUnit. No additive keys are allowed when
this openMode is used. Whenever possible, use additive key 02000
rather than openMode -2.

Open for reading and writing. The compiler assumes that the disk file
is already open on PRIMOS file unit fileUnit. No additive keys are al
lowed when this openMode is used. Whenever possible, use additive
key 02000 rather than openMode -3.
Additive key to enable no-wait mode I/O. This key is valid only for
TTY, asynchronous, and magnetic tape devices.
Additive key to cause mapping of \n to \n\r on output,
valid only for TTY and asynchronous devices.

This key is

Additive key to cause truncation of an already existing disk file when
it is opened for writing, that is, with openMode 1, 2, -2, or -3. This
key is valid only for disk devices. If this key is used with additive
key 02000 (or openModes -2 or -3), the file is truncated at its current
position, rather than at the beginning of file.

4-37

C User's Guide

TABLE 4-3. Values for the openMode Argument of open (continued)

Value Meaning

01000 Additive key to disable disk write buffering. This causes all write()
and seek() requests to be flushed immediately to PRIMOS, with the pos
sible exception of a single odd byte at the end of file. This key is
valid only for disk devices.

02000 Additive key to signal that a disk file is already open on PRIMOS file
unit fileUnit for the specified openMode (0, 1, or 2). The current file
position is not altered. This key is valid only for disk devices. Use
this key rather than -1, -2, or -3 whenever possible. Other additive
keys may be used with this key.
Additive key to disable automatic assigning (on open()) and unassigning
(on close()) of asynchronous and magnetic tape devices. This key is
valid only for asynchronous and magnetic tape devices.

Additive key to cause a SAM file to be created if key 1 or 2 are used
and the specified file does not already exist. Creation of a new DAM
file is the default. This key is valid only for write or read/write
open() requests for disk devices.
Additive key to cause a CAM file to be created if key 1 or 2 is used
and the specified file does not already exist. Creation of a new DAM
file is the default. This key is valid only for write or read/write
open() requests for disk devices.
Additive key to disable disk read buffering. This causes all read() re
quests to come directly from PRIMOS rather than through a local
buffer. Similarly, all seek() requests are executed immediately instead
of being deferred until the next physical disk I/O operation. This key
is useful if one process is reading a file that is being concurrently writ
ten by another process and the most up-to-date data must be available
for reading at all times. This key is valid only for disk devices.

0200000 Additive key to cause a magnetic tape device to be rewound when
closed. This key is valid only for magnetic tape devices.

0400000 Additive key to cause a magnetic tape device to be unloaded when
closed. This key is valid only for magnetic tape devices.

01000000 Additive key to disable unassigning of asynchronous or magnetic tape
devices when they are closed. This key causes the device to be assigned
when it is opened, but leaves it assigned to the user process after it is
closed. This is useful for writing multiple tape marks to magnetic tape
devices. This key is valid only for magnetic tape devices.

02000000 Additive key to signal that the optional arguments protocol, config and
lword are present. This key causes open() to use these arguments for
asynchronous device assignment. These arguments are passed through to
the PRIMOS routine ASNLN$. If this key is not specified then the fol
lowing values are used. This key is valid only for asynchonous devices.

04000

010000

020000

040000

4-38

Using the C Library

TABLE 4-3. Values for the openMode Argument of open (continued)

Value

04000000

010000000

Meaning

Value

protocol
config
lword

Meaning

null string
0
0

Additive key to signal that the optional argument magTapeOptions is
present. This key causes open() to use this argument for magnetic tape
device assignment. The argument magTapeOptions must be a NULL-
terminated string containing command line options acceptable to the
PRIMOS ASSIGN command, for example, "-density 6250 -speed 100".
See the PRIMOS Commands Reference Guide for other options to the
ASSIGN command. If this key is not specified, no additional options are
used. The MTX syntax supported by the PRIMOS ASSIGN command is
not supported by the C libraries, which support only 9-track tape I/O.
This key is valid only with magnetic tape devices.

Additive key that causes all PRWF$$ writes to be done in force write
mode. This means that PRWFSS does not return until the disk records
involved are written to disk. This key should be combined with the
unbuffered write key (01000) to achieve the desired results.

The opened file is a binary file. No translation takes place between the user program and
the disk. Any type of data can be written and read back correctly. However, ASCII data
written to these types of files is not translated into PRIMOS standard text format and thus
is not valid data for other PRIMOS commands such as ED and SPOOL. Reading and
writing these types of files with read() and write() is much faster than using fopen()
with fread() and fwrite().

All I/O to TTY and asynchronous devices is in raw mode; that is, your kill and erase
characters are not interpreted. Normally, the output is not filtered in any way, but if you
use the 0200 key, the \n (newline character) is translated to \n\r (newline carriage-return)
on output.

Because of disk buffering, a maximum of one page (2048 bytes) may be buffered by the
low-level I/O routines before it is actually written to disk. You can use the function
fflush() to write the contents of the buffer to disk. You must first use fdopen() to
obtain a filePointer, which you then pass to fflush().

While a file is being accessed by Cs I/O libraries it may appear to have an odd size in
bytes. The libraries maintain this illusion. However, PRIMOS does not support odd length
files, so when a file with an odd length is closed, it may be padded with one null byte
to bring it up to an even length.

Three predefined filelDs (values 0 through 2) do not have to be opened before I/O may be
performed using them.

4-39

C U s e r ' s G u i d e ' ^ ^

V a l u e M e a n i n g * ^

0 TTY input (stdin)
1 TTY output (stdout)
2 TTY output (stderr)

These filelDs always refer to the user's terminal and may not be redirected. The two
output filelDs have the 0200 additive key set.

The filelDs returned for nondisk devices, including the three predefined filelDs, are for
use only with the I/O routines read(), write(), lseek() and tell(). You cannot pass any of
these filelDs to fdopen() to obtain a filePointer.

You can perform four low-level I/O operations on an open device: read(), write(),
lseek()/seek(), and tell(). All four operations are permitted on disk devices. Only read(), *^%
write() and tell() operations are valid for TTY and asynchronous devices. The operations
read(), write() and lseek() are valid for magnetic tape devices. close() is valid for all
devices. Any files opened by C library routines must be closed by C library routines.

For TTY devices, tell() returns 0 if no characters are available to read, and returns 1 if
characters are available to read.

For asynchronous devices, tell() returns two pieces of information packed into the returned _
32-bit integer. The most significant 16 bits contain the amount of free space in the output ^
buffer, in bytes. This corresponds to the value returned by the PRIMOS subroutine
TSAMLC called with a value of 7 for the key argument. (See Volume IV of the
Subroutines Reference Guide for more information about TSAMLC.) The least significant
16 bits contain the number of bytes waiting to be read in the input buffer. This
corresponds to the value returned by TSAMLC with a key value of 4.

For example,

u n s i g n e d i n t A s y n c s t a t u s ; ^
short freeOutputBytes, waitinglnputBytes;

Asyncstatus = tel 1(fi lelD);
freeOutputBytes = Asyncstatus >> 16;
waitinglnputBytes = Asyncstatus & OxFFFF;

Magnetic tape devices may be opened for read or write, but not read/write. All magnetic
tape operations are in raw mode and affect an entire tape record. The operations read(),
write() and lseek() are valid for magnetic tape devices. However, each read() or write()
causes an entire tape record to be read or written, and all position (lseek()) requests are
specified in records rather than bytes. 0 and 1 are the only direction keys allowed for
lseek() on magnetic tape devices. 0 means record from beginning of tape, 1 means record
from current postion.

When a magnetic tape device that has been opened for write is closed, an end-of-file tape
mark is written. You can write a double tape mark by using the following procedure.

4-40

Using the C Library

1. Open the device using the OlOOOOOO additive key. When you use this key, the
device is not unassigned when closed.

2. Close the device. This writes one tape mark.

3. Open the device again using no additive keys. The device is reassigned even though
it is already assigned, but that does no harm.

4. Close the device. This writes the second tape mark and unassigns the device.

No-wait mode I/O, enabled by the 0100 openMode, has different effects depending on the
device type. For TTY and asynchronous devices, no-wait mode causes read() requests not to
wait if fewer than the specified number of characters are actually available to read. For
example, in no-wait mode, if a request is made to read 10 bytes and the user has typed
only two characters, then read() returns only two bytes. In wait mode the read() blocks
until 10 bytes are actually available, and all 10 are returned.

For tape devices, no-wait mode affects read(), write() and lseek() operations. Control
returns to the caller as soon as the requested operation is started. Thus, for a read()
request, control returns to the caller before the user's buffer is filled with the requested
data. Similarly, for write() requests, control returns to the caller before all of the data is
actually written to tape. This enables you to implement double buffering tape I/O
mechanisms. If your program makes a second tape request before the previous one has
completed, then control does not return to the caller until the first operation is complete
and the second one has started. In order to wait for the completion of an operation in no-
wait mode, make the following lseek() call for the tape device:

lseek(fileID, 0, 1);

In wait mode, for tape devices, all operations are completed before control is returned to the
caller.

For disk devices, lseek() returns the new byte offset within the file, or -1 on any error.
For magnetic tape devices, lseek() returns 0 if the operation was successful and -1 on error.
In either error case, the external variable errno (defined in stdio.h) is set to the PRIMOS
error code.

The C library I/O routines use the PRIMOS subroutine TSMT to move data to and from
magnetic tape. (See Volume IV of the Subroutines Reference Guide.) This places the
following constraints upon magnetic tape I/O:

• You cannot write records that contain an odd number of bytes. If you request an
odd number of bytes, TSMT rounds your request up to a even number.

• The largest tape record that you can read or write is, at most, 12K bytes. It may be
as small as 10K bytes, depending on the page alignment of the buffer. You are not
allowed to use larger records.

• The buffer address used for tape I/O (read() or write()) must be aligned on a 16-bit
boundary. If you try to pass an odd byte aligned buffer, these routines return -1
and set errno to ESBPAR.

4-41

C User's Guide

The external variable errno (defined in stdio.h) is used for two distinct purposes in
conjunction with magnetic tape I/O. If the function read(), write() or lseek() fails because
of a PRIMOS error, such as Device not assigned, the function returns -1 and errno is
set to the PRIMOS error code. If the function succeeds, however, and an operation is
successfully started, read() or write() returns the size of the request in bytes, and lseek()
returns 0. In this case, errno is set to the current hardware status, which is the second
element of the statv argument to TSMT. It is your responsibility to check errno for any
errors that occur during tape operations, such as End of tape detected or Parity
er ror.

The meaning of the current hardware status depends upon whether you are performing
wait mode or no-wait mode I/O. If you have enabled no-wait mode by using the 0100
key, when a tape operation is successfully started, errno is set to the current magnetic tape
hardware status before the read(), write() or lseek() operation is started. If you are using
wait mode I/O, however, errno reflects the hardware status after the operation is complete.
In either mode, you can use the special call

lseek(fileID, 0, 1)

to cause errno to be set to the current hardware status, after completion of any pending
operation. The function bio$primosfileunit() allows you to determine the PRIMOS file unit
that is being used to access a disk file. Given a filelD returned from open() or fileno(),
bio$primosfileunit() returns the corresponding PRIMOS file unit.

▶ perrorC)

Writes a short error message to the user's terminal describing the last error encountered
during a call to the C runtime library from a C program.

#include <stdio.h>
extern int errno;
perrorCstring)
char *string;

The perrorC) function writes out its argument (a user-supplied prefix to the error message),
followed by a colon, followed by the message itself, followed by a newline. The argument
is typically the name of the program that incurred the error.

The external symbol errno (defined in stdio.h) contains the number of the most recent error.
This is a standard system error code as defined in SYSCOM>ERRD.INS.CC; a value of 0
indicates no previous error.

▶ pow()

Returns the first argument raised to the power of the second argument.

4-42

Using the C Library

#include <math.h>
double powCx, y)
double x, y;

The first argument cannot be negative. Both arguments must be double, and the returned
value is double.

▶ primospathC)

Takes a pathname such as those used by the UNIX operating systems and converts it to a
PRIMOS pathname.

char *primospath(unixPathname)
char *unixPathname;

The UNIX operating systems use the slash (/) character as a separator in pathnames instead
of the PRIMOS greater-than (>) symbol. The symbol . specifies the current directory, and ..
specifies the parent directory. By definition, .. of / is /. (The parent of the root is the
root.) Pathnames that do not start with a slash are considered to be relative to the current
attach point. The characters @, +, and = are passed through unchanged.

The function primospath() returns a pointer to a static character array containing the
PRIMOS pathname.

▶ printfC), fprintfC), sprintfC)

Perform formatted output to the standard output (printf()), to a specified file (fprintf()),
or to a character string in memory (sprintf()).

#include <stdio.h>
int printfCformatSpecification [, outputSource,. . .])
char *formatSpecification;

#include <stdio.h>
int fprintfCfilePointer,

formatSpecification [, outputSource,. . .])
FILE *filePointer;
char *formatSpecification;

#include <stdio.h>
int sprintfCstring, formatSpecification [, outputSource,. . .])
char *string;
char *formatSpecification;

All three functions take a format-specification argument containing characters to be written
literally to the output and/or conversion specifications corresponding to the list of optional
output sources.

4-43

C User's Guide

All three functions return the number of characters actually written out. The printfC)
and fprintf() functions return -1 if an I/O error occurs.

The output sources are expressions whose types correspond to conversion specifications given
in the format specification. If no conversion specifications are given, the output sources
may be omitted; otherwise, the function call must have exactly as many output sources as
there are conversion specifications, and the conversion specifications must match the types of
the output sources. Conversion specifications are matched to output sources in simple left-
to-right order.

formatSpecification is a character string that specifies the output format.
formatSpecification may contain ordinary characters, conversion specifications, or both.
Ordinary characters are printed to the output literally.

Conversion Specifications
A conversion specification causes the conversion of a corresponding outputSource to a
formatted character string. Each conversion specification begins with a percent sign (%) and
ends with a conversion character that specifies an output format. Conversion characters and
their corresponding output formats are listed in Table 4-4.

Optionally, conversion specifiers may be inserted between the percent sign and the
conversion character. Table 4-5 lists the conversion specifiers and their effect upon the
output format. If you use conversion specifiers, you must place them in the order shown
in that table.

TABLE 4-4. Conversion Characters for Formatting Output

C h a r a c t e r M e a n i n g

% d C o n v e r t s t o d e c i m a l f o r m a t .

%o Converts to unsigned octal format without leading 0.

%x Converts to unsigned hexadecimal format without leading Ox.

%u Converts to unsigned decimal format, returning a number in the
range 0 through 4,294,967,295.

%c Outputs a single character. (A NULL is ignored.)

%s Outputs a character string. (Characters are written until NULL
is encountered or until the number of characters indicated by the
precision specification is exhausted. If the precision specification
is 0 or omitted, all characters up to a NULL are output.)

4 -44

Using the C Library

TABLE 4-4. Conversion Characters for Formatting Output (continued)

C h a r a c t e r M e a n i n g

r

%e, %E Converts float or double to the format
[-]m.nnnnnnE[+l-]xx
where the number of ns specifies the precision (default = 6). If
the precision is explicitly 0, the decimal point is displayed but
no ns are displayed. An E is printed if the conversion character
is an uppercase E. An e is printed if the conversion character is
a lowercase e.

%f Converts float or double to the format

[-]m. . . m.nnnnnn
where the number of ns specifies the precision (default = 6).
Note that the precision does not determine the number of sig
nificant digits printed. If the precision is explicitly 0, no
decimal point and no ns appear.

%g Converts float or double to %d, %e, or %f format, whichever is
shorter. (Suppresses insignificant zeros.)

%Lf, %Le, %Lg Same as %e, %f, %g, except that they convert a long double
number to the corresponding format. Use this specification in
conjunction with either the -ANSI option, or with the
-QUADCONSTANTS and -QUADFLOATING options. (The -ANSI
option includes support for the long double data type.)

%p Converts the address of a pointer to the format
[*]ssss[(r)]/wwwwww[+8b]
The asterisk (*) indicates that the fault bit is set. ssss is the
segment number, in octal, r is the ring number (0, 1, 2, or 3).
wwwvww is the word number, in octal. +8b indicates that the
byte bit (also called the extension bit) is set, indicating that the
address is 48 bits in length. (If +8b does not appear, the address
is 32 bits in length.)

%% Writes out the percent (%) symbol. No conversion is performed.

4-45

C User's Guide

TABLE 4-5. Field Specification for Output Formats

Character Meaning

Left-justifies the converted output source in its field.
width Designates the minimum field width. The value is an integer

constant. If the converted output source is wider than this min
imum, write it out anyway. If the converted output source is
smaller than the minimum width, pad it to make up the field
width. Padding is normally done with spaces, and with 0 if
the field width is specified with a leading 0. (This does not
mean that the width is an octal number.) Padding normally oc
curs on the left. If a minus sign is used, however, padding oc
curs on the right.

Separates field width from precision.

precision Designates the maximum number of characters to print with the
%s format, or the number of fractional digits with the %e, %f
or %g format. The value is an integer constant.

1 Indicates that a following %d, %o, %x, or %u specification cor
responds to a long output source. (Note that in PRIMOS C, all
ints are long by default.) Indicates that a following %e, %f or
%g specification corresponds to a double output source.

* Can be used to replace the field-width specification and the
precision specification. The corresponding width or precision is
given in the output source.

▶ putcC), f putcC), putcharC), putwC), puthC)

Write characters to a specified file.

#include <stdio.h>
int putcCcharacter, filePointer)
char character;
FILE *filePointer;

#include <stdio.h>
int fputcCcharacter, filePointer)
char character;
FILE *filePointer;

#include <stdio.h>
int putcharC character)
char character;

4 -46

Using the C Library

#include <stdio.h>
int putwCinteger, filePointer)
int integer;
FILE *filePointer;

#include <stdio.h>
int puthCinteger, filePointer)
int integer;
FILE *filePointer;

The putcC) function writes a single character to a specified file and returns the character.
The file pointer is left positioned after the character. This function is implemented as a
macro.

The fputc() function generates the same results as the putc() function, but it is not
implemented as a macro.

The putcharC) function writes a single character to the standard output and returns the
character. This function is identical to putc(stdout). The putchaK) function is
implemented as a macro.

The putw() function writes an int to an output file as four characters. No type
conversion is performed.

The puth() function writes the low-order two bytes of an int to a specified output file as
two characters. No type conversion is performed.

All of these functions return EOF (defined in stdio.h) to designate output errors. Because
EOF is itself an integer, use ferrorC) to detect errors encountered by the putw() function.

▶ putsC), f putsC)

Write a character string.

#include <stdio.h>
int puts(string)
char *string;

int fputsCstring, filePointer)
char *string;
FILE *filePointer;

The putsC) function writes a string to the standard output, followed by a newline. The
fputsC) function writes a character string to a specified file, but it does not append a
newline to the string. Neither function copies the terminating NULL to the output stream.

4-47

C User's Guide

▶ putwC)

#include <stdio.h>
int putwCinteger, filePointer)
int integer;
FILE *filePointer;

For more information, see the putc() function.

▶ randC), srandC)

randC) returns pseudo-random numbers that range from 0 through 231 - 1. srand() can be
called at any time to reset the random number generator to a random starting point.

int randC)
int srandCseed)
int seed;

The rand() function uses a multiplicative congruential random number generator with a
repeat factor (period) of 232. The random number generator is reinitialized by calling
srand() with the argument 1, or it can be set to a specific point by calling srand() with
any other number. If rand() is called before a call to srand(), an initial seed of 1 is
used.

▶ readC)

Reads bytes from a file specified by a filelD returned from the openC) or creatC) function,
and places them in a buffer.

#include <stdio.h>
int readCfilelD, pointer, nbytes)
int filelD, nbytes;
char ^pointer;

pointer points to a buffer into which data is read from the file specified by filelD. The
buffer must be large enough to hold at least nbytes of contiguous storage. The function
returns the number of bytes actually read. The return value does not equal nbytes if an
end of file is encountered before the read() can be completed.

Use of open() and read() is more efficient than use of fopen() and fread(). To get
maximum speed from this routine, pointer and the file pointer should have the same
alignment. Both should be at an odd byte or an even byte.

A return value of 0 means that an end of file was encountered before any bytes of data
could be read. The function returns -1 on any error and sets errno (defined in stdio.h) to
the file system error code.

4-48

Using the C Library

The read() function is valid for disk devices, TTY and asynchronous devices, and magnetic
tape devices.

For more information, see the description of the open() function on page 4-36.

▶ reallocC)

Changes the size of the area pointed to by the first argument to the number of bytes
given by the second argument.

char *realloc(pointer, size)
char ^pointer;
unsigned size;

The reallocC) function returns the address of the area, because the area may have moved to
a new address. If the area was moved, the space previously occupied is freed. If realloc()
is unable to reallocate the space (for example, if there is not enough room) it returns 0.

The realloc() function must be used on currently allocated space and cannot be called with
an area that was previously freed. The contents of the area are unchanged up to the
lesser of the old and new sizes. If the old size is less than the new size and is not an
even multiple of 8, then any bytes between the old size and the next highest multiple of
8 will contain garbage. After that, new space in the reallocated area is initialized with 0.
For example, if the old size is 6 and realloc() is called with a size of 50, the contents of
the first 6 bytes remain the same; the next two bytes contain garbage; and the last 42
bytes are initialized with 0.

Note
The C library's routines for dynamic memory management (malloc(), calloc(),
realloc(), free(), and cfree()) are designed for use only with each other. If you
allocate memory with code written in another language, do not deallocate it with a C
routine. Similarly, if you allocate memory with a C routine, do not deallocate it
with code written in another language.

▶ rewindC)

Positions the file to the beginning.

#include <stdio.h>
int rewind(filePointer)
FILE *filePointer;

The rewindC) function is equivalent to f seek(f i lePointer, 0, 0). It returns -1 to
indicate failure and 0 to indicate success.

4-49

C User's Guide

▶ rindexC)

#include <string.h>
char *rindex(string, character)
char *string, character;

For more information, see the strrchr() function.

▶ scanfC), fscanfC), sscanf()

Perform formatted input from the standard input (scanf()), from a specified file (fscanf()),
or from a character string in memory (sscanf()).

#include <stdio.h>
int scanfC formatSpecification [, inputPointer,. . .])
char *formatSpecification;

#include <stdio.h>
int fscanfCfilePointer, formatSpecification [, inputPointer,. . .])
FILE *filePointer;
char *formatSpecification;

#include <stdio.h>
int sscanfCstring, formatSpecification [, inputPointer,. . .])
char *string, ^formatSpecification;

In each function, formatSpecification may contain ordinary characters, conversion
specifications, or both. Ordinary characters are matched literally. Each conversion
specification converts a portion of the input to a target designated by an inputPointer.

Each function returns the number of successfully matched and assigned input items. If end
of file (or string) is encountered, the functions return EOF (a preprocessor constant defined
in stdio.h).

The formatSpecification is a character string that can include three kinds of items:

• White-space characters (spaces, tabs, and newlines), which cause input to be read up to
the next non-white-space character.

• Ordinary characters (except %), which must match the next non-white-space character
in the input.

• Conversion specifications (beginning with %), which govern the conversion of the
characters in an input field and their assignment to an object indicated by a
corresponding inputPointer. (See Table 4-6, at the end of this section.)

Each inputPointer is an address expression indicating an object whose type must match that
of the corresponding conversion specification. The indicated object is the target that receives
the input value. The number of inputPointers must match the number of conversion

4-50

^ ^ U s i n g t h e C L i b r a r y

Mm* specifications, and the addressed objects must match the types of the conversion
specifications.

On successive calls, scanfC) and fscanf() resume searching at a point immediately after the
last character processed by the previous call. The sscanf() function lacks this functionality.
The string is searched from the beginning on each call to sscanf().

Conversion Specifications
Each conversion specification begins with a percent sign (%). This sign is followed by an
optional assignment-suppression character (*), an optional number giving the maximum field
width, and a character indicating the type of conversion. The conversion characters are
described in Table 4-6.

^^ An input field is defined as a string of non-white-space characters. It extends either to the
next white-space character or until the optionally specified field width is exhausted. (Note
that because the newline character belongs to the set of white-space characters, the function
reads across line/record boundaries.) The delimiters of the input field can be changed with
the bracket conversion specification, %[. . .], described in Table 4-6.

If the assignment-suppression character (*) appears in the format specification, the
corresponding input field is interpreted and then skipped, without making any assignment.

^ For example, you can use assignment suppression to read a character followed by a newline:

scanf('7oc£*c\ &c);

This call to scanf() reads one character, then drops the next character it sees. If the
assignment suppression character is not used here, the next call to scanf() will pick up the
next character, with possibly unexpected results.

The inputPointer arguments must be pointers or other address-valued expressions. To read a
m-^ number in decimal format and assign its value to n, you must use the code

scanf("2d\ &n)

not

scanf("°/d\ n)

White space in a format specification matches optional white space in the input field. That
is, the format specification string = %6 matches

string = 1234
string=1234
string= 1234
string =1234

^ ^ b u t n o t
strin g=1234

4-51

C U s e r ' s G u i d e ' ^ ^

TABLE 4-6 . Convers ion Spec ifica t ions fo r Format t ing Inpu t " ^%

C h a r a c t e r M e a n i n g

%d A decimal integer is input. The corresponding argument must be
an integer pointer.

%o An octal integer is input with or without a leading sign and 0.
The corresponding argument must be an integer pointer.

%x A hexadecimal integer is input with or without the leading Ox.
The corresponding argument must be an integer pointer.

%c A single character is input. The corresponding argument must
point to a character. White space is not skipped in this case, so
that n white-space characters can be read with %nc. If a field
width is given with %c, the given number of characters is read,
and the corresponding argument must be a character array
pointer.

%s A character string is input. The corresponding argument must
point to an array of characters that is large enough to contain
the string plus the terminating NULL (\0). The input field is
terminated by a white-space character (space, tab, or newline).

%f, %he, %hf A floating-point number is input. The corresponding argument
must be a pointer to a floating-point number. The input format
for a floating-point number is

[+k]nnn[.[ddd]][{Ele}[+k]nn]
where d and n are decimal digits.

% e S a m e a s % f f o r m a t .

%ld, %lo, %lx Same as %d, %o, %x.

%lf, %le Same as %e, %f, except that the corresponding argument is a
pointer to a double rather than a floating-point number. The
same effect can be obtained by using an uppercase E or F.

%Lf, %Le, %Lg Same as %e, %f, %g, except that the corresponding argument is a
pointer to a long double rather than a floating-point number.
Use this specification in conjunction with either the -ANSI option,
or with the -QUADCONSTANTS and -QUADFLOATING options.
(The -ANSI option includes support for the long double data
type.)

4-52

Using the C Library

TABLE 4-6. Conversion Specifications for Formatting Input (continued)

C h a r a c t e r M e a n i n g

%p The address of a pointer is input, in the format
[*]ssss[(r)]/wwwwww[+8b I +0b]

The asterisk (*) causes the fault bit to be set. ssss is the seg
ment number, in octal, r is the ring number (0, 1, 2, or 3).
wwwwww is the word number, in octal. +8b sets the byte bit
(also called the extension bit), indicating that the address is 48
bits in length. +0b leaves the byte bit reset, indicating a 32-bit
address.

Note
For scanf() to read the %p specification correctly, the ar
gument must be a pointer to a pointer to void. For ex
ample, the declaration
voi d *pt r;
and the statement
scanf("%p", fcptr);
will read in a pointer value correctly.

%hd, %ho, %hx Same as %d, %o, %x, except that the corresponding argument is a
pointer to a short rather than an int.

%[. . .] A string that is not delimited by white-space characters is input.
The brackets enclose a set of characters. Ordinarily, this set is
made up of the characters that comprise the string field. Any
character not in the set terminates the field; however, if the
first character in this set is a caret ("), the set specifies the
characters that terminate the field. The corresponding argument
must be a character array pointer.

▶ seekC)

#include <stdio.h>
int seekCfilelD, offset, direction)
int filelD, offset, direction;

For more information, see the lseek() function.

▶ setbufC)

Associates a buffer with an input or output file.

#include<stdio.h>
setbufCfilePointer, buffer)
FILE *filePointer;
char *buffer;

4 -53

C User's Guide

The setbuf() function may be called only after the file has been opened and before any
I/O is done with respect to the file. It causes file operations to use the specified buffer
for all subsequent I/O operations on the file instead of using an automatically allocated
buffer. The buffer must be large enough to hold an entire input record. The BUFSIZ
constant defined in the stdich module is available for your use in defining the size of the
buffer. If the buffer is NULL (defined in stdio.h), the file is unbuffered. The buffer
must be obtained by calling malloc() because it is freed when a call to fclose() is made
with filePointer.

Note that unbuffered I/O is permitted on binary files only. That is, the file must have
been opened by a call to fopen() with an open mode of "i" or "o", not "r" or "w".
The setbuf() routine can also be used with the defined files stdout and stderr to cause
terminal output to be buffered. Buffered terminal input is not allowed.

setbuf() returns the defined constant EOF if the requested operation cannot be performed.
See the discussion of input and output buffering in Chapter 7.

▶ setjmpC), longjmpC)

Provide a way to transfer control from a nested series of functions back to a predefined
point without returning normally (that is, not by a series of return statements).

#include <setjmp.h>
setjmpCenv)
jmp buf env;

#include <setjmp.h>
longjmpCenv, val)
jmp buf env;

The setjmpC) function saves the context of the calling function in an environment buffer.
The longjmpC) function restores the context of the environment buffer.

The environment buffer is declared as an array of integers long enough to hold the context
of the calling function.

When setjmpC) is first called, it returns the value 1. If longjmpC) is then called and the
same environment is named as in the call to setjmp(), control is returned to the setjmpC)
call as if it had returned normally a second time. The value then returned by the
setjmpC) routine is second argument to longjmpC) in 32IX mode.

In 64V mode the value returned by setjmpC) is undefined when setjmpC) returns by virtue
of a call to longjmpC). (The second argument to longjmpC) is retained for compatibility
only.) Since this value could coincidentally be 1 (which also indicates that setjmp() has
been called for the first time), it is best to use a static external data object to communicate
between the code that calls longjmp() and the code that calls setjmp(). Never rely on the
value returned by setjmpC) in V-mode code.

4-54

Using the C Library

Routines that call setjmp() should be compiled with low levels of optimization (that is,
-NOOPT or -OPT l).

For an example of the use of setjmp() and longjmpC), see page 5-21.

▶ setmodC)

Sets access rights for a specified file. This function is analogous to the getmodC) function,
which reads access rights for a specified file.

#include <stdio.h>
int setmodCpathname, user, mode)
char *pathname, *user;
int mode;

Specify the user argument to set access rights for a particular named user or group. If the
object is protected by a default ACL or by an access category, then a copy of that ACL is
made as a specific ACL for the object. This routine modifies an existing ACL rather than
replacing it. For objects in password-protected directories, only the read, write, delete, and
default bits are used. Specify a user name of "_nonowner_" to set nonowner rights for
an object in a password-protected directory.

setmodC) uses three additional bit settings that getmod() does not use: 00 for no access,
0200 to remove an ACL, and 0400 to return the object to default protection. The bit
settings for access rights are listed with getmod() above.

The setmod() function returns -1 on all errors and sets errno (defined in stdio.h) to the
file system error code.

▶ signalC)

Provides a mechanism for handling conditions that arise during execution. In addition, the
CCMAIN.BIN C library must be linked in for signalC) to work properly. This function is
available in 32IX mode only.

#include <signal.h>
void C*signalCsig, func)X)
int sig;
void C*funcX);

Note
See the descriptions of the abortC) and timerC) functions in this chapter for examples
of programs that use signal().

The signaK) function determines how conditions that occur during execution will be
handled. The first argument, sig, is a constant that specifies the type of signal to be

4-55

C User's Guide

handled. These constants, or macros, are defined in the SIGNAL.H.INS.CC file and are listed
in Table 4-7 as follows.

TABLE 4-7. Conditions Raised by sig Argument of signal Function

sig Arg Cause Condition Raised

SIGHUP Hangup LOGOUTS

SIGINT Interrupt QUITS first choice

SIGQUIT Quits QUITS second choice
SIGILL Illegal instruction RESTRICTED_INST$

UIIS

SIGABRT Abnormal termination ABORTS
SIGFPE Arithmetic error ARITHS

ERROR

SIGBUS Bus error ACCESS_VIOLATI01
SIGSEGV Segmentation violation ILLEGAL_SEGNOS

OUT_OF_BOUNDS$
NO_AVAIL_SEGS$
NULL_POINTER$
POINTER_FAULT$

SIGSYS Bad arg to system call

SIGALRM Alarm clock

SIGTERM Software termination

LI.\KAGE_FAULT$
LINKAGE_ERROR$
SVC_INSTS

ALARMS

CLEANUPS (STOPS)

The second argument, func, specifies the function to be called if the condition named by
sig is raised. This can be either a user-defined function or one of the following macros
defined in SIGNAL.H.INS.CC.

Func Arg

SIG_DFL
SIG_IGN

Action to be Taken

Implementation-defined default behavior
Ignore the condition

The user-supplied handler, func, for any signal is invoked as:

func(sig)

where the argument, sig, specifies the condition that was raised.

4-56

Using the C Library

f * ▶ s i n C)
Returns the sine of its radian argument. Both the argument and the sine value must be
double.

#include <math.h>
double sinCx)
double x;

▶ sinhC)

Returns the hyperbolic sine of the argument. Both the argument and the hyperbolic sine
value must be double.

#include <math.h>
double sinh(x)
double x;

▶ sleepC)

Suspends the execution of the current process for at least the number of seconds specified
by its argument. When successful, sleepC) returns the number of seconds that the process
slept.

int sleepCseconds)
unsigned seconds;

▶ sprintfC)

#include <stdio.h>
int sprintf(string, formatSpecification [, outputSource,. . .])
char *string;
char ^formatSpecification;

For more information, see the printfC) function.

▶ sqrtC)

Returns the square root of the argument. The argument and the returned value are both
double. The argument must not be negative.

#include <math.h>
double sqrtCx)
double x;

4-57

C User's Guide

▶ srandC)

int srandCseed)
int seed;

For more information, see the randC) function.

▶ sscanfC)

#include <stdio.h>
int sscanfCstring, formatSpecification [, inputPointer,. . .])
char *string,*formatSpecification;

For more information, see the scanfC) function.

▶ statC)

Fills a stat structure with information about a specified file.

#include <stdio.h>
int statC pathname, buffer)
char ^pathname;
struct stat * buffer;

The stat structure contains all information returned from the fsizeC), fdtm(), ftypeC), and
frwlockC) routines. The statC) function returns -1 on all errors and sets errno (defined in
stdio.h) to the file system error code. The structure layout is as follows (structure defined
in stat.h):

struct stat { long st_size; /* File size
in bytes */

long st_mtime; /* DTM of file */
short st_type; /* Type of file */
short st_rwlock; /* Read/write

lock of the
file */

};

▶ stermC)

Sets terminal characteristics.

#include <term.h>
void stermCbuffer)
struct sterm *buffer;

4-58

Using the C Library

The BREAK bit is ignored in the passed-flags structure. The two additional bit settings of
INHIBIT_BREAK 040 and ENABLE_BREAK 0100 are used in its place. See also the
description of gtermC) on page 4-28.

▶ strcatC), strncatC)

Concatenate character strings.

#include <string.h>
char *strcat(stringl, string2)
char *stringl, *string2;

#include <string.h>
char *strncat(stringl, string2, max)
char *stringl, *string2;
int max;

The strcatC) function concatenates its second argument to the end of its first argument.
Both arguments must be character strings, and, in the case of strcatC), NULL-terminated.

The strncatC) function performs the same operation as strcatC), but it uses characters from
the second argument up through the specified maximum unless a NULL terminator is
encountered first. The argument max is an integer giving the maximum number of
characters to use from string2. If a strncatC) call reaches the specified maximum, strncat()
sets the next byte in string 1 to NULL.

Both functions return the address of the first argument, string 1. The argument is assumed
to be large enough to hold the concatenated result.

▶ strchrC), indexC), strrchrC), rindexC)

Find the first (or last) occurrence of a character in a string.

#include <string.h>
char *strchrCstring, character)
char *string, character;

#include <string.h>
char *strrchrCstring, character)
char *string, character;

These functions perform similar tasks. The strchrC) function returns the address of the
first occurrence of a given character in a NULL-terminated string. It returns 0 if the
character does not occur in the string. The strrchrC) function is similar to strchrC), but it
returns the address of the last (rightmost) occurrence of the character.

4-59

C U s e r ' s G u i d e " ^

The index() function is a synonym for strchr(), and the rindex() function is a synonym "^j
for strrchK).

▶ strcmpC), strncmpC)

Compare two ASCII character strings.

#include <string.h>
int strcmpCstringl, string2)
char *stringl, *string2;

#include <string.h>
i n t s t r n c m p C s t r i n g l , s t r i n g 2 , m a x) _
c h a r * s t r i n g l , * s t r i n g 2 ; " ^
int max;

The strcmpC) function compares two ASCII character strings and returns a negative, 0, or
positive integer, indicating that string 1 is lexicographically less than, equal to, or greater
than string2. The returned value is obtained by subtracting the ASCII values of the
characters at the first position where the two strings disagree.

The strncmpC) function performs the same operation as strcmpC), but it compares a specific
maximum number of characters in the two strings. The argument max gives the maximum ^
number of characters, beginning with the first to be compared.

With either function, the comparison is terminated when a NULL is encountered.

▶ strcpyC), strncpyC)

Copy argument strings.

#include <string.h>
char *strcpy(stringl, string2)
char *stringl, *string2;

#include <string.h>
char *strncpy(string 1, string2, max)
char *stringl, *string2;
int max;

The strcpyC) function copies string2 into string 1. This function terminates when a NULL
is encountered in string2.

The strncpyC) function copies a specified number of characters from string2 to string 1.
Exactly max characters are copied, including NULLs. This is a block memory move. If
string2 contains more than max characters, the copy in string 1 is not necessarily terminated
by a NULL. Both functions return the address of string 1.

4-60

Using the C Library

▶ strcspnC)

Searches a string for a character in a specified set of characters.

#include <string.h>
int strcspnCstring, charset)
char *string, *charset;

The strcspnC) function returns the number of characters that precede the matched one.
That is, the function spans the characters not in charset and returns the number of such
leading characters.

If the argument string is a null string, 0 is returned. If no characters in string are in
charset, the length of string is returned.

▶ strlenC)

Returns the length of a string of ASCII characters. The returned length does not include
the terminating NULL C\0).

#include <string.h>
int strlen(string)
char *string;

▶ strncatC)

#include <string.h>
char *strncat(stringl, string2)
char *stringl, *string2;
int max;

For more information, see the strcatC) function.

▶ strncmpC)

#include <string.h>
int strncmpCstringl, string2, max)
char *stringl, *string2;
int max;

For more information, see the strcmpC) function.

4-61

C User's Guide

▶ strncpyC)

#include <string.h>
char *strncpyCstringl, string2, max)
char *stringl, *string2;
int max;

For more information, see the strcpyC) function.

▶ strpbrkC)

Searches a string for an occurrence of one of a specified set of characters.

#include <string.h>
char *strpbrkCstring, charset)
char *string, *charset;

The strpbrkC) function returns the address of the first character in string that is in
charset, or NULL if no character is in the set.

▶ strrchrC)

#include <string.h>
char *strrchrCstring, character)
char *string, character;

For more information, see the strchrC) function.

▶ strspn()

Searches a string for the occurrence of a character not in a specified set of characters.

#include <string.h>
int strspnCstring, charset)
char *string, *charset;

The strspn() function returns the number of characters that precede the mismatched
character. That is, the function spans the characters in charset and returns the number of
such leading characters.

If charset is a null string, a value of 0 is returned. If all the characters in string are
also in charset, the length of string is returned.

4-62

Using the C Library

▶ systemC)

Executes the command contained in its argument as a PRIMOS command, and then resumes
execution of the current program.

int system(command)
char *command;

Abbreviations are expanded. If the call succeeds, systemC) returns 0. If the call fails,
systemC) returns a positive integer.

▶ tanC)

Returns a double value that is the tangent of the argument expressed in radians, which
must also be double.

#include <math.h>
double tan(x)
double x;

▶ tanhC)

Returns a double value that is the hyperbolic tangent of the double argument.

#include <math.h>
double tanh(x)
double x;

▶ tellC)

Returns the current byte position in a file specified by a filelD returned from openC).

#include <stdio.h>
int tell(filelD)
int filelD;

The byte position returned by the tellC) function can be used in future calls to seekC) or
lseekC). The function returns -1 on any error and sets errno (defined in stdich) to the
file system error code.

The use of tell() is valid on disk, TTY, and asynchronous devices, but not on magnetic
tape devices. For TTY devices, tell() returns 0 if no characters are available to read and 1
if characters are available to read. See open() for more information.

4 -63

C User's Guide

▶ timeC)

Returns the time, in seconds, elapsed since 00:00:00, Jan. 1, 1970.

int time(seconds)
int ^seconds;

If the pointer seconds is not NULL (0), the returned value is also stored in the location to
which seconds points.

▶ timerC)

Causes the PRIMOS ALARMS condition to be raised after a specified number of elapsed
minutes.

void timerCmins)
int mins;

The timerC) function is analogous to the alarm routine found on UNIX operating systems,
except that a separate call to either signalC) or MKONSP must be made to set up the
handler for the condition.

The following examples demonstrate how to catch the ALARMS condition using signalC)
and MKONSP. In the examples, note that you can turn off the timer by calling the
function with a 0 argument.

Example 1:
OK, SLIST TMP1.C
^include <signal.h>
static short minutes = 0;

main()
{

void alarm_handler();

signal(SIGALRM, alarm_handler);

timer(l); /* raise ALARMS in one minute */

for (;;) {
if (minutes == 2) {

timer(O); /* turn timer off */
return;

}
pr intf(Mlooping...\n");
sleep(lO);

}
}
/* function that is called when timer is up */
void
alarm_handler(sig)

int sig;

4-64

Using the C Library

printf("A minute has passed.\n");
♦♦minutes;
t imer(l) ; /* reset t imer * /
re turn;

}
OK, CC TMP1 -32IX
[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
00 Errors and 00 Warnings detected in 31 lines and 115 include lines.
OK, BIND -LI CCMAIN -L0 TMP1 -LI C_LIB
[BIND Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
BIND COMPLETE
OK, R TMP1
looping.. .
looping. . .
looping. . .
looping. . .
looping. . .
looping.. .
A minute has passed.
looping. . .
looping. . .
looping. . .
looping. . .
looping. . .
looping. . .
A minute has passed.
OK,

Note the use of the 32IX-mode predefined symbol CI in the next example. The CI
symbol enables the compilation unit to be correct for both 64V and 32IX mode. The

CI symbol is discussed in more detail on page 5-20. See the description of the
-UNDEFINE option on page 2-34 for information about other predefined symbols.

Example 2:
static short minutes = 0; /* Minute count;

incremented by
handler */

main()
{

#ifdef _CI
fortran void handler(); /* Condition handler */

#else
extern void handler(); /* Condition handler */

#endif
fortran void mkon$p(); /* Make an onunit */
fortran void sleep$(); /* PRIMOS sleep routine */

/* *** Start of code *** */

mkon$p("ALARMS", 6, handler);
/* Set up ALARMS handler */

t i me r(1);
/* Raise ALARMS in one minute */

4-65

C User's Guide

f o r (; ;)
{

if (minutes == 2)
{

t i m e r (O) ; / * T u r n t i m e r o f f * /
r e t u r n ;

}
pr in t f ("Looping. . . \n") ;
sleep$((long)10000); /* Sleep for 10 seconds */

}
} /* main */

#ifdef _CI
for t ran

#endif
void handler(cfh)

i n t * c f h ; / * P R I M O S p a s s e d c o n d i t i o n f r a m e
header pointer;
we'11 ignore it. */

{
printf("A minute has passed.\n");
♦♦ m i n u t e s ; / * B u m p c o u n t * /
t i m e r (1) ; / * R e s e t t i m e r * /
r e t u r n ; / * B a c k t o w h e r e w e „ w e r e * /

} /* handler */

▶ tmpnamC)

Creates a character string that can be used in place of the pathname argument in other
function calls such as open() and fopenC).

#include <stdio.h>
char * tmpnamC name)
char *name;

If the name argument is null, tmpnamC) places the string in an internal storage area and
returns a pointer to it. If it is not null, it is taken to be the address of an area of
length L_tmpnam (defined in stdio.h). In this case, the string is written into this location,
and name is returned. Multiple calls to tmpnamC) with a null argument cause the current
name to be overwritten.

▶ toasciiC)

Converts a character or integer to an ASCII character by ANDing the value with 0377.
Note that this is a mathematical operation only; it is not intended to convert noncharacter
data to printable characters. This function is implemented as a macro.

#include <ctype.h>
int toasciiCcharacter)
char character;

4-66

Using the C Library

▶ tolowerC), _tolowerC)

Converts its argument, an uppercase alphabetic ASCII character, to lowercase.

#include <ctype.h>
int tolowerCcharacter)
char character;

The algorithm used is

character - 'A' + 'a'

The function tolowerC) first checks the range of the argument to make sure that it is an
uppercase character. If so, it returns the lowercase form of argument; otherwise, it returns
the argument unmodified. However, _tolower() is implemented as a macro and operates on
any passed argument. It does not check the range of the argument.

▶ topasciiC)

Converts a character or integer to a Prime ASCII character by ANDing the value with 0377
and then ORing it with 0200. Note that this is a mathematical operation only, and is not
intended to convert noncharacter data to printable characters. This function is implemented
as a macro.

#include <ctype.h>
int topascii(character)
char character;

▶ toupperC), __toupperC)

Returns its argument, an ASCII lowercase alphabetic character, converted to uppercase.

#include <ctype.h>
int toupper(character)
char character;

The algorithm used for the conversion is

character - 'a' + 'A'

The function toupperC) first checks the argument to make sure it is a lowercase character.
If so it returns the uppercase form of the character. Otherwise, it returns the argument
unmodified. However, _toupperC) is implemented as a macro and operates on any passed
argument. It does not check the range of its argument.

4-67

C User's Guide

▶ ungetcC)

Writes a character to the buffer of a file and leaves the file positioned before the
character.

#include <stdio.h>
int ungetcCcharacter, filePointer)
char character;
FILE *filePointer;

The written character is said to be pushed back onto the file, because it is returned by the
next getcC) call. The function returns the pushed-back character or EOF if it cannot push
the character back.

One character is guaranteed to be pushed back, provided something has previously been read
from the file. The fseekC) function erases all memory of pushed-back characters.

▶ writeC)

Writes a specified number of bytes from a buffer to a file specified by a filelD returned
from the openC) or creatC) functions.

#include <stdio.h>
int writeCfilelD, pointer, nbytes)
int filelD, nbytes;
char *poin;

pointer is the address of nbytes of contiguous storage. The writeC) function returns the
number of bytes actually written. writeC) returns -1 on all errors and sets errno Cdefined
in stdio.h) to the file system error code.

The writeC) function is valid for disk devices, TTY and asynchronous devices, and magnetic
tape devices.

For more information, see the description of the openC) function on page 4-36.

4-68

INTERFACING TO OTHER LANGUAGES

On 50 Series systems, you can write programs in C that call subroutines written in other
50 Series languages such as PL/I, Pascal, and F77. Similarly, you can write programs in
other 50 Series languages that call C subroutines. Interlanguage calling, however, is
somewhat complicated. Each of the high-level languages has its own conventions for
declaring and accessing different data types and for passing data to a called function or
procedure. In addition, differences exist in the way individual compilers are implemented on
the 50 Series. Consequently, you must use special programming techniques to bridge this
gap between different languages.

On 50 Series systems, you can compile C programs in either 64V or 32IX mode. Both
modes are standard C, so they share the same language-specific conventions for declaring and
accessing data types and for passing data to functions. Some differences exist, however, in
the ways the two modes are implemented on the 50 Series. As a result, the techniques for
interlanguage calling are somewhat different for the two modes.

Organization of This Chapter
This chapter contains information about the following topics:

• The differences between C and other languages that are important to interlanguage
calling

• How to call other languages from either 64V-mode or 32IX-mode C

• How to call 64V-mode C from other languages

• How to call 32IX-mode C from other languages

• How to call 64V-mode C from 32IX-mode C

• How to call 32IX-mode C from 64V-mode C

• Function return types from C and other language routines

• How to use conditional compilation to make your interlanguage C code correct for
both modes

5-1

C User's Guide

• How to use the PRIMOS condition mechanism from C

• How to create and access common blocks from C

• How to access MIDASPLUS files

DIFFERENCES BETWEEN C AND OTHER LANGUAGES
This section begins with a list that summarizes the major differences between C and other
high-level languages. The list is followed by more detailed descriptions of each of the
differences. These descriptions contain references to examples that occur in later sections of
the chapter.

Differences common to both 64V-mode and 32IX-mode C are the following:

• C passes parameters to a function by value. Other languages pass parameters to a
function or procedure by reference.

• Certain data types are promoted when they are passed as parameters to a function in
C. This does not occur in other languages.

• Arrays begin with element zero in C. In many other languages, arrays begin with
element one.

• Strings in C are NULL-terminated arrays of characters. Some other languages use a
different representation for strings.

• When C passes an array as a parameter to a function, it actually passes a pointer to
the first element of the array. Most other high-level languages actually pass the first
element itself.

Differences specific to 64V-mode C or 32IX-mode C are the following:

• In 64V-mode C, pointers are 48 bits long. In 32IX-mode C, pointers are 32 bits long.
Some of the other 50 Series languages use 48-bit pointers, some use 32-bit pointers,
and some use both.

• In 32IX mode, the compiler changes the names of external identifiers. The prefix G$
is prepended to the names of external variables, routines, and common blocks. This
does not occur in 64V mode.

• 32IX-mode C programs cannot easily access pointers returned by routines written in
other languages. This problem does not exist in 64V mode.

Pass by Value Versus Pass by Reference
In a C program, if you pass a scalar variable to a function, the called function receives a
copy of the variable. Therefore, the called function cannot change the value of the original
variable. This is called passing by value. In C, if you want a function to change the
value of a variable, you must expressly pass a pointer to the variable. The called function
then receives a copy of the pointer, but both the original pointer and the copy point to the

5-2

Interfacing to Other Languages

same place. Therefore, if the called function changes the variable pointed to, the original
variable is changed. The following program example shows both ways of passing a
variable to a function in C.

#include <stdio.h>
main()
{

int var;
int *ptr;
var = 5;
f unc l (va r) ;
printf("After call to fund, var = 7.6. \n",var);
ptr = &var ;
func2(p t r) ;
printf("After call to func2. var = Zd. \n",var);

}

funcl(myvar)
int myvar;
{

myvar += 2; /* This doesn't change the value of var. */
}

func2(myptr)
int *myptr;
{

myptr += 2; / This changes the value of var. */
}

This program prints
After call to fund, var = 5.
After call to func2, var = 7.

Note that fund does not change the value of var, but func2 does. That is because var
is passed to fund by value, so fund gets only a copy of var. The function func2 gets
a copy of the pointer myptr. The copy of my ptr, however, points to the same place as
myptr, so func2 can change the value of var. The only way you can pass a scalar
variable by reference in C is to pass a pointer.

Other high-level languages are different from C. Most high-level languages pass parameters
to a function by reference. That is, you do not have to pass a pointer in order to change
the value of the original variable. The called function actually gets the original variable,
not a copy of the variable.

On 50 Series systems, special interlanguage calling conventions allow you to pass most types
of arguments by reference from C language programs to non-C functions without expressly
passing a pointer. See Examples 1 and 2 on pages 5-8 and 5-9.

To pass a pointer by reference, you must use an integer as a dummy variable and cast it
to a pointer. See Example 7 on page 5-12.

5-3

C User's Guide

Promotion of Argument Types
In a non-ANSI C program, when you pass a char, short int, or short unsigned int as a
parameter to a function, it is promoted to type int. Similarly, if you pass a float, it is
converted to type double. The following example shows the proper way to code a
function that receives these data types.

main()
{

char c;
short int s;
int 1;
fl o a t f ;
double d;
f o o (c , s , l , f , d) ;

}

f o o (c , s , l , f , d)
int c,s, 1;
double f.d;
{

/* Any code here */
}

Notice that the passed variables of type char and short int are received as type int, and
the variable of type float is received as type double. This method of passing and picking
up arguments conforms to the Kernighan and Ritchie standard. The important point here is
that other high-level languages do not promote data types; the called function or procedure
receives the same data type that was originally passed.

For the reasons just described, the only data types that can be passed from a non-C
program to a C function on 50 Series systems are types long int, double, and pointers to
all types. When you call a non-C routine from a C program, the interlanguage calling
conventions available with PRIMOS C automatically suppress promotion. See Examples 1
and 2 on pages 5-8 and 5-9.

Be particularly cautious when you write code in which a C function receives a parameter,
then passes it to a non-C routine. The C compiler lets you write code that hides the fact
that data type promotion has occurred, as shown in the following example:

f o o (c , s , l , f , d)
char c;
short s;
int 1;
float f;
double d;
{

/* Any code here */
}

With the PRIMOS C compiler, this method works correctly, even though it is not standard
C. The compiler makes the assumption that c and S were really passed as type int and
that f was really passed as type double. The compiler warns you about the type change
only when you use the -VERBOSE option. If you pass one of these parameters to a non-C

5 - 4

Interfacing to Other Languages

routine, and you do not use -VERBOSE on the command line, you can easily forget what
data type you are really passing. See Example 6 on page 5-11.

In an ANSI C program using function prototypes, variables passed to a function are
converted to the parameter types of the function's prototype. If the parameter list ends
with (, ...), however, the default argument promotion is done in the same way as for non-
ANSI C.

First Element of an Array
In a C program, arrays are indexed starting with item zero, as shown in the following
example:

static int array[3] = {1, 2, 3};
main()
{

printf("array[2] = %d. \n" ,array[2]);
}

This program prints
array[2] = 3.

because array[2] is the third element of the array, which is 3. In FORTRAN and many
other languages, the first element of an array is item one. This simple difference needs no
elaboration, but remember to watch for it in interlanguage programs. See Example 9 on
page 5-13.

Representation of Strings
In C, a string is simply a NULL-terminated array of type char. Most C library functions
that operate on strings use the NULL byte to determine when they have reached the end
of the string. For example, if you use the conversion specification %s in a format
specification for the printfC) function, printfC) expects the corresponding variable to be a
NULL-terminated array of characters. If the NULL byte is missing, printfC) cannot format
the data properly.

Other high-level languages do not terminate their strings with a NULL byte. Instead, they
store the length of the string along with its contents. If your C program uses strings
received from non-C routines, you may wish to add a NULL byte so that you can treat
them like ordinary C strings. Alternatively, if you pass such a string to a formatting
function such as printfC) or sprintfC), you can use a precision specification so that the
function accesses only a specific number of characters. When you pass a string from a C
program to certain non-C routines, you may be required to pass its size, also. See Examples
1, 4, and 6 on pages 5-8, 5-10, and 5-11.

5 - 5

C User's Guide

Passing Arrays as Parameters
In C, the name of an array is actually a pointer to the first element of the array. You
pass this pointer when you pass an array to a function. Other 50 Series languages, such as
F77 and PL/I, pass the first element of the array. Thus, array handling in C has one
more level of indirection than in other languages.
When you pass an array to a C function from another language, you may use either of
two methods to deal with the extra level of indirection. One method is to force the other
language to pass C the address of the array. You can do this by using the LOC function
in F77 or the ADDR function in PL/I. See Examples 9 and 12 on pages 5-13 and 5-16.
Another method is to use a dummy integer variable to receive the array, then cast its
address to a pointer type. See Examples 10 and 13 on pages 5-14 and 5-16. When you
pass an array from a C program to a routine written in another language using the special
interlanguage calling conventions, the array is passed in a manner that is compatible with
the other language. See Examples 1, 2, and 4 on pages 5-8, 5-9, and 5-10.

Be cautious when you write code in which a C function receives an array as a parameter,
then passes the same array to a non-C routine. The C function actually receives a pointer,
and you must cast the pointer to an array type before you can pass it to a non-C routine.
See Example 4 on page 5-10.

Pointer Size in 64V-Mode and 32IX-Mode C
The pointer formats for 64V-mode and 32IX-mode C are described in Appendix E. 64V-mode
C uses 48-bit pointers; 32IX-mode C uses 32-bit pointers. Other 50 Series languages vary
with respect to pointer size. For example, Pascal uses 48-bit pointers. PL/I uses 48-bit
pointers by default, but you can pass a 32-bit pointer from PL/I by using the SHORT
option. F77 does not use pointers, but you can get the address of an F77 variable with
the LOC function, which generates a 32-bit pointer.

When you pass a pointer to a C function from a PL/I program, pass a full 48-bit pointer
if the function is compiled in 64V mode. You may pass either a 32-bit or a 48-bit pointer
if the function is compiled in 32IX mode. When you call a C function from Pascal, the
pointer is the correct size for 64V-mode C, and 32IX-mode C simply ignores the extra
information. When you use LOC to pass an address from F77 to a C program, the pointer
is the correct size for 32IX-mode C, but is missing some information expected by 64V-mode
C. This is not a problem, however, because all data types in F77 are aligned on an even
byte, so the byte offset bit is never set. As a result, the short pointer is interpreted
correctly by 64V-mode C. See Examples 8, 9, 11, and 12 on pages 5-12, 5-13, 5-15, and
5-16.

The special interlanguage calling conventions, described later in this chapter, allow you to
pass 48-bit pointers from both 64V-mode C and 32IX-mode C when you call other language
routines. See Examples 1 and 2 on pages 5-8 and 5-9.

5-6

Interfacing to Other Languages

External Identifier Names in 32IX Mode
Two versions of the C libraries exist on your system: one for use by 64V-mode programs
and the other for use by 32IX-mode programs. A special naming convention helps to
insure that the correct routine is linked. In 32IX mode, the prefix G$ is prepended to each
external symbol name in the user code. The 32IX mode library, which was also compiled
in 32IX mode, also has G$ prepended to its routines, so that the correct link is made.

This naming mechanism becomes visible to you, as a programmer, only when you share a
common block between 32IX mode-C and another language. The non-C code must explicitly
specify the G$ prefix. See Examples 19 through 22 on pages 5-23 through 5-25.

Functions Returning Pointers
Most non-C routines return pointers in a register that is the wrong one for 32IX-mode C
programs. The interlanguage calling conventions on 50 Series systems do not resolve this
incompatibility. Non-C functions that return pointers must be declared as type int in a C
program. The returned value must then be cast to a pointer type. See Example 16 on
page 5-20.

Note
The C library's routines for dynamic memory management (mallocC), callocC),
reallocC), freeC), and cfreeC)) are designed for use only with each other. If you
allocate memory with code written in another language, do not deallocate it with a C
routine. Similarly, if you allocate memory with a C routine, do not deallocate it
with code written in another language.

CALLING OTHER LANGUAGE ROUTINES FROM C PROGRAMS
Prior to Rev. 19.4, the PRIMOS C compiler supported code generation in 64V mode only.
These early versions supported an awkward, antiquated interlanguage-calling convention now
known as -oldFORTRAN. With -oldFORTRAN, the fortran keyword was used to declare
any non-C routines. For example, the PRIMOS subroutine SRCHSS was declared as follows:

fortran void srch$$();

In the argument lists to these routines, the & character was given special meaning. When
placed in front of simple variables, the & character caused them to be passed by reference.
For compatibility reasons, this convention, now known as the -OLDFORTRAN option, is still
available in 64V mode, although -NEWFORTRAN is the default. We strongly suggest that
you make whatever source changes are required and use the -NEWFORTRAN compile line
option in 64V mode.

In 32IX mode, only -NEWFORTRAN is available. All the explanations and examples in this
chapter assume that you are using the -NEWFORTRAN option when you compile your
program.

5-7

C User's Guide

The fortran Storage Class
When your C program calls a subroutine written in another language, you must suppress
the default action of converting char and short int arguments to int and float arguments
to double. You must also enable the passing of arguments by reference. Further, if your
C program is compiled in 32IX mode, you must force the compiler to use a compatible
stack frame format and to pass 48-bit pointers. You do all of these things by declaring
the non-C routine with a storage class of fortran. Note that you use the fortran storage
class for all non-C routines, not just FORTRAN language routines.

In general, PRIMOS C passes arguments to routines declared with the fortran storage class
by reference, if possible. However, certain data types, parenthesized lvalues, and non-lvalues
are passed by value. CAn lvalue is a data item that may appear on the left side of an
assignment statement.) The specific rules are as follows.

Arguments of the following types are passed by value, as described in the following table:

T y p e H o w P a s s e d
Characters As short integers (that is, as the low

order byte of a 16-bit halfword)
P o i n t e r s A s 4 8 - b i t p o i n t e r s
B i t fi e l d s A s l o n g i n t e g e r s
Constants As whatever type they are
Non-lvalues As whatever type they are
Parenthesized lvalues As whatever type they are

Lvalues of the following types are passed by reference: short integer, long integer, float,
double, structure, union, and array (including string constants).

Notes
You can cause any lvalue to be passed by value by putting it in parentheses.

You cannot pass a pointer _by reference.

Example 1
The PRIMOS routine TNOU expects an array of characters, followed by a 16-bit integer
containing a count of characters in the array. Valid calls to TNOU from C are shown in
the following program.

main(
{

fortran tnou();
static char buffer[] = "Hi there";
char *p = "Another test";
tnou("This is a test", 14);
tnou(buffer, (short)str len(buffer)) ;
tnou((char [])p, (short)strlen(p));

5-8

Interfacing to Other Languages

Note the following points about this example:

• TNOU is declared with the storage class fortran.

• The constant number 14 is passed correctly.

• The constant string l l This is a test" is passed correctly.

• The string called buffer is passed correctly because it is declared as an array.

• The string called p is declared as a pointer, so it must be cast to an array before it
is passed.

Note that the following call is incorrect.
main() /* THIS EXAMPLE IS WRONG!! */
{

fortran tnou();
char *p = "Another test";
tnou(*p, (short)strlen(p)); /* This won't work!! */

}

This is wrong because *p has type char. If you passed *p, the first character of the
string would be converted to a short integer and passed by value.

Example 2
This example shows a C program that passes various data types to non-C routines called
FUN and MOREFUN.

main()
{

short s, *p;
struct {short a; char buf[10], int f1:5tf2:4;} str;
long a[10];
fortran fun();
fortran morefun();
fun(s, (s), (float)s, a[s], (a[s]), *p, p);
morefun(str, s t r.buf , s t r.buf [s t r.a] , s t r.fl) ;

}

The parameters are passed to fun as follows:

• S is passed by reference as short.

• (S) is passed by value as short.

• (f loat)s is passed by value as float.

• a [S] is passed by reference as long.

• (^ [S]) is passed by value as long.

• *p is passed by reference as short.

• p is passed by value as a pointer.

• str is passed by reference as a structure.

5 - 9

C User's Guide

• str.buf is passed by reference as an interlanguage compatible array.

• str.buf[str.a] is passed by value as a short integer.

• s t r. f 1 is passed by value as a long integer.

Example 3
Some PRIMOS subroutines expect to receive a character as a 16-bit integer. In the
following example, the character pointed to by cptr is passed correctly to the subroutine
TIOU.

sti1lAnotherMain()
{

char *cptr;
fortran tlou();
t lou(*cptr);

}

Example 4
When a C routine is passed an array as a parameter, it actually gets a pointer. If you
want a C routine that receives an array to pass it to a non-C routine, you must cast it
first, as shown in the following example:

f o o (s t r i n g)
char string[]; /* The compiler changes this to char *string */
{

fortran tnou();
tnou((char [])s t r ing, (short)st r len(str ing)) ; / * OK */

}

The following call does not work correctly, because string is a pointer, not an array,
when it is received as a parameter by the routine foo.

foo(string) /* THIS EXAMPLE IS WRONG!! */
char string[]; /* The compiler changes this to char *string */
{

fortran tnou();
tnou(string, (short)strlen(string)); /* THIS DOESN'T WORK!! */

}

Example 5
As noted previously, certain data types are promoted when they are passed as parameters to
a function, but you can write C code that hides the fact that promotion has occurred. The
following program contains a C routine that receives three parameters, then passes the same
parameters to a non-C routine. Although the C routine's parameters are declared as char,
short, and float, they are actually received as long int, long int, and double,
respectively. As a result, NON_C_ROUTINE receives two long ints and a double.

5-10

Interfacing to Other Languages

Subroutine (c.s.f)
char c; /* Changed to long int */
short s; /* Changed to long int */
float f; /* Changed to double */

main()
{

fortran non_C_routine();
non_C_routine(c,s ,f);

Example 6
Some F77 and PL/I routines are coded to accept a string of variable size as a parameter.
When you pass a string argument from a C program to such a routine, you must pass an
additional parameter in order to describe the true length of the string argument.
Furthermore, if nonstring parameters are passed to such a routine along with the string,
you must pass length arguments for all the parameters, even the nonstring parameters. The
argument list must contain the actual arguments followed by the length arguments, in the
same order. In the case of a nonstring argument, the value zero is used as a length
argument.

In the following example, a string variable, a short, and a string constant are passed to the
F77 or PL/I routine DEMO. The F77 and PL/I code are also shown.

C program:
main()
{

static char string[] = "hi there";
short idummy;
fortran demo();
demo(st r ing, idummy, "other s t r ing" ,s t r len(st r ing) , 0 , 12) ;

}

F77 routine:
SUBROUTINE DEM0(S1, SHORT, S2)
CHAR*(*) SI, S2
INTEGER*2 SHORT
RETURN
END

PL/I routine:
demo: proc(sl, short, s2);

del (sl,s2) char(*);
del short fixed bin(15);
return;

end;

Note that in the call to the subroutine DEMO, a value of 0 was passed in the fifth
position, corresponding to the argument whose type was short.

5-11

C User's Guide

Example 7
Some non-C routines change the value of pointers that they receive as parameters. Such
routines require you to pass pointers by reference. Unfortunately, C programs pass pointers
by value, even to routines declared with the fortran storage class. To pass a variable by
reference, you must declare it to be an integer type. After the call to the routine, the
integer contains the desired value. If you want to use this value as a pointer in your
program, you must then cast the integer to a pointer type. On the 50 Series, a direct cast
from an integer type to a pointer type, or vice versa, alters the bit pattern. To perform
such a cast without altering the bit pattern you must add a level of indirection.

The following program uses a dummy integer variable to pass a pointer to a non-C routine
by reference. (See also the discussion of casting between pointer and integer types in
Chapter 7.)

main()
{

long *ptr;
int dummy;
fortran void non_c_routine();

non_c_routine(dummy); /* Dummy is passed by reference as an int */
ptr = *(char **)&dummy; /* This doesn't alter the bit pattern */

/* Any code using ptr */

}

Note the following points about this example:

• The dummy argument is declared as type int.

• Because NON_C_ROUTINE is declared fortran, dummy is passed by reference.

• You must cast the value of dummy to a pointer type before you can use it as a
pointer.

• You must use a complex cast to avoid altering the bit pattern of the value.

CALLING 64V-MODE ROUTINES FROM OTHER LANGUAGES
Because of the argument type conversion expected by C functions, only integral types (long
int), double precision real (double), and pointers (to any type) may be passed to C routines.

Example 8
The following example shows a PL/I main routine that calls a 64V-mode C subroutine.

5-12

Interfacing to Other Languages

PL/I program:
main: proc;

del C64Vroutine entry(fixed bin(31), float bin(47), pointer);
del charArray char(lOO) static

init('This is a test, only a test');

call C64Vroutine(123, 3.14159. addr(charArray));
end;

C subroutine:

void C64Vroutine(longlnt, doubleReal, charPointer)
int longlnt;
double doubleReal;
char *charPointer;
{

pr intf ("Arguments are: 7.6, %f , Z.20s\n",
longlnt , doubleReal , charPointer) ;

}

Note the following points about this example:

• The character array passed from PL/I is not NULL terminated. Therefore, the call to
printf() contains the precision specification .20 so that printf() accesses only a
specified number of characters.

• The declaration of the C subroutine in the PL/I program specifies a full 48-bit
pointer.

• The PL/I program specifically passes the address of the string.

Example 9
The following C routine expects to be called with an array of short integers passed in
from another language:

void JustForFun(array)
s h o r t a r r a y [] ; < - - T w o e q u i v a l e n t * /
s h o r t * a r r a y ; < - - d e c l a r a t i o n o p t i o n s * /
{

/* Use of the array */
}

This C routine can be called correctly by the two following programs:

F77 program:
INTEGER*2 ARRAY(IO)
CALL JUSTFORFUN(LOC(ARRAY))
STOP
END

5-13

C User's Guide

PL/I program:
main: proc;

del JustForFun entry(pointer);
del array(lO) fixed bin(15);
ca l l Jus tForFun(addr (a r ray)) ;
r e t u r n ;

end;

Note the following points about this example:

• Whether the incoming array is declared as short array[] or as short *arr ay, the
C routine always expects a pointer to the first element of the array.

• F77 and PL/I normally pass an array by passing the first member of the array, so
you need to add a level of indirection to the array before you pass it from F77 or
PL/I to C.

• You add a level of indirection by passing the address of the array returned by LOC
in F77 or ADDR in PL/I.

• Because this C routine is compiled in 64V mode, it expects a full 48-bit pointer from
PL/I, but it can correctly interpret the 32-bit pointer from F77.

Example 10
The C routine and F77 program below accomplish the same task as Example 9 above.

C routine:
void test(dummy)
int dummy;
{

short *array = (short *)&dummy;
pr intf ("First two elements = 7.6 Xd\n" ,array[0], array[l]);

}

F77 program:
INTEGER*2 ARRAY(IO)
ARRAY(l) = 3
ARRAY(2) = 10
CALL TEST(ARRAY)
STOP
END

Note the following points about this method:

• The F77 program passes the array in normal F77 fashion, so the C routine actually
receives the first member of the array by reference.

• The incoming argument to the C routine is declared to be of type int.

• The address of the dummy integer is cast to type short * within the C routine.

• ARRAY(n) in the F77 program becomes array[n-l] in the C routine, where n is an
index value.

5-14

Interfacing to Other Languages

CALLING 32IX-MODE C FROM OTHER LANGUAGES
Because of the argument type conversion expected by C functions, only integral types (long
int), double precision real (double), and pointers (to any type) may be passed to C routines.
As mentioned previously, and as defined fully in Chapter 6, 32IX mode uses a unique stack
frame format. A 32IX-mode C routine that is called from another language must be
defined as having the fortran storage class in its definition line. This syntax is legal in
32IX mode only.

Example 11
The following example shows the same program that was used in Example 7, but with the
C routine compiled in 32IX mode. The two differences between this example and Example
7 are the use of the fortran storage class in the C subroutine's definition line and the size
of the pointer passed from PL/I. Once again, a PL/I main routine calls a 32IX-mode C
subroutine.

PL/I program:
main: proc;

del C32IXroutine entry(fixed bin(31) .float bin(47),
pointer options(short));

del charArray char(lOO) static
init('This is a test, only a test');

call C32IXroutine(123, 3.14159, addr (charArray));
end;

C subroutine:

fortran void C32IXroutine(longlnt, doubleReal, charPointer)
int longlnt;
double doubleReal;
char *charPointer;
{

pr intf ("Arguments are: 7.6, %f, Z.20s\n",
long ln t .doub leRea l , charPo in te r) ;

}

Note the following points about this example:

• The definition of the C function begins with the word fortran.

• Again, the character array passed from PL/I is not NULL terminated. Therefore, the
call to printf() contains the precision specification .20 so that printf() accesses only a
specified number of characters.

• The declaration of the C subroutine in the PL/I program specifies a short pointer.
(This is optional.)

• The PL/I program specifically passes the address of the string.

5-15

C Users Guide

Example 12
This example is the same as Example 9, but the C routine is compiled in 32IX mode. The
C routine expects to be called with an array of short integers passed in from another
language:

fortran void JustForFun(array)
short *array;
{

/* Use of the array */
}

The following two programs can correctly call this C routine:

F77 program:
INTEGER*2 ARRAY(IO)
CALL JUSTFORFUN(LOC(ARRAY))
STOP
END

PL/I program:
main: proc;

del JustForFun entry(pointer options(short));
del array(lO) fixed bin<15);
ca l l Jus tForFun(addr (a r ray)) ;
r e t u r n ;

end;

Note the following points about this example:

• The 32IX-mode C routine has the word fortran in its definition line.

• The incoming array is declared as short *array, and the C routine always expects a
pointer to the first element of the array.

• F77 and PL/I normally pass an array by passing the first member of the array by
address, so you need to add a level of indirection to the array before you pass it
from F77 or PL/I to C. You do this by passing the array to LOC in F77 or ADDR
in PL/I.

• Because this C routine is compiled in 32IX mode, it can handle either a 48-bit pointer
or a 32-bit pointer.

Example 13
The C routine and F77 program below are the same as Example 10, but the C routine is
compiled in 32IX mode.

5-16

Interfacing to Other Languages

C routine:
fortran void test(dummy)
int dummy;
{

short *array = (short *)&dummy;
printf ("First two elements = 7.6 X6\n" ,array[0], array[l]);

}

F77 program:

INTEGER*2 ARRAY(IO)
ARRAY(l) = 3
ARRAY(2) = 10
CALL TEST(ARRAY)
STOP
END

Note the following points about this method:

• The 32IX-mode C routine has the word fortran in its definition line.

• The F77 program passes the array in normal F77 fashion, so the C routine actually
receives the first member of the array by reference.

• The incoming argument to the C routine is declared to be of type int.

• The address of the dummy integer is cast to type short * within the C routine.

• Array members ARRAY(l) and ARRAY(2) in the F77 program become array[0] and
array[l] in the C routine.

CALLING 64V-M0DE C FROM 32IX-M0DE C

Calling a C routine compiled in 64V mode from a C routine compiled in 32IX mode is
similar to calling another language from 32IX-mode C, as described earlier in this chapter.
You must declare the 64V-mode routine with storage class fortran so that the compiler in
32IX mode uses argument-passing conventions compatible with 64V mode. The 64V-mode
routine, however, differs from a foreign language routine in two important respects:

• It expects its parameters to be passed by value.

• It assumes that standard C argument conversions have been performed by the caller.

Because you are using the fortran storage class, you must use parentheses if you want
arguments to be passed to the 64V-mode routine by value. The use of the fortran storage
class also disables standard C argument promotion. However, you can expressly cast each
char, short int, or short unsigned int to type int and each float to double before
passing it. This insures that the 64V-mode routine gets the data types it expects.

5-17

C User's Guide

CALLING 32IX-MODE C FROM 64V-MODE C
There are two ways to call 32IX-mode routines from 64V-mode C. One method is similar
the one discussed above in the previous section, Calling 32IX-mode C From Other Languages.
That is, you include the word fortran in the definition line for the 32IX-mode routine.
For example,

fortran void ixroutine(argl)
int argl;
{

/* Code for the 32IX-mode routine */
}

This causes the 32IX-mode routine to use a stack frame format compatible with 64V mode.
In all other respects, you code as you normally would.

An alternate method is to use the -CIX command line option when you compile the 64V-
mode program. In this case, you do not use the fortran storage class. The format of the
compile line option is

CC program -CIX routine

where program is the name of the 64V-mode source program and routine is the name of
the routine that was separately compiled in 32IX mode. This causes the compiler to assume
that the external routine name was compiled by the C compiler in 32IX mode, and causes
the correct 32IX-style calling sequence to be generated. Argument type conversions are
compatible between 64V and 32IX C code, so these issues do not cause any problems here.
This method is not recommended, because your code is wrong if you forget to use the -CIX
option.

Example 14
This example shows the 64V assembler code generated when a 64V-mode C program calls a
32IX-mode routine.

C code to be compiled in 64V mode:
main()
{

int i;
double d;
char *p;
ci(i,p,d); */ Assume "-CIX ci" on the command line */

5-18

Interfacing to Other Languages

Generated 64V-mode assembler code:
LDL
STL SBZ+OFFSET+0
LDL
STL SBZ+OFFSET+2
DFLD
DFST SBZ+OFFSET+4
EAXB SB%+0FFSET+0
PCL C I , *

<-- Copy the arguments for pass
by value

<-- Set up 32IX "argument pointer"
<-- Cal1 32IX routine

Note that no APs are used, all pointers are shortened to two halfwords, and the address of
the argument list is placed in the XB register before the PCL. See Chapter 6 for more
information.

FUNCTION RETURN TYPES FROM C AND OTHER LANGUAGE
ROUTINES
Functions written in C may return values to routines written in other languages, and vice
versa. Type compatibilities are shown in Table 5-1.

TABLE 5-1. Language Type Compatibilities

c F77 PL / I Pascal

short INTEGER*2 fixed bind 5) integer
long INTEGERS fixed bin(3l) longinteger
float REAL*4 float bin(23) real
double REAL*8 float bin(47) longreal

See Volume I of the Subroutines Reference for other language type compatibilities.

Avoid writing interlanguage functions that return characters, structures, or pointers, if
possible.

Example 15
Normally, avoid writing interlanguage functions that return structures. However, the
following instance is a valid use of a C structure to receive a string returned by a PL/I
routine. Assume that TEST is written in PL/I and returns a CHAR(lOO) VAR.

5-19

C User's Guide

main()
{

typedef struct {short length; char data[100];} Cvar;
Cvar string;
fortran Cvar test();
str ing = test();
printf("String = X.*s\nM, string.length, string.data);

}

Note the following points about this example:

• The struct is declared to contain a short followed by an array of 100 characters.

• The short variable is used as an argument to printfC). It corresponds to the *
character, which replaces the precision specification, so printf() accesses the correct
number of characters.

Example 16
Normally, avoid calling routines in other languages that return pointers. However, you may
wish to use certain PRIMOS subroutines, such as memory allocation routines, that return
pointers. If you are using 32IX-mode C, this presents a problem because certain routines
return pointers in a register that is the wrong one for 32IX-mode C programs. To pick up
the returned pointer in the correct register, you must declare such a routine type int in
your 32IX-mode C program. In order to use the returned value as a pointer, you must
cast it to a pointer type. However, casting between pointer and integer types on the 50
Series alters the bit pattern, unless you add a level of indirection. (See the discussion of
casting in Chapter 7.)

The following example shows a 32IX-mode C function that uses a pointer returned by the
PRIMOS routine STR$AL.

char *foo(bytes)
unsigned int bytes;
{

fortran int str$al(); /* Returns a pointer value as an integer */
short ecode;
in t temp; / * In te rmed ia te s to rage fo r po in te r va lue * /
char *pointer;

temp = str$al(0, bytes >> 1, 0, ecode);
pointer = *(char **)&temp; /* Convert integer to pointer without

changing the bit pattern */
}

Note the following points about this example:

• STR$AL is declared as type int, with storage class fortran.

• A temporary variable of type int holds the returned value.

• The returned value is cast to a pointer type so that it can be used as a pointer.

• A complex cast is used so that the bit pattern is not altered.

5-20

Interfacing to Other Languages

MAKING YOUR CODE CORRECT FOR BOTH MODES
Sometimes you must write C code that can be safely compiled in either 64V mode or 32IX
mode. For your convenience, PRIMOS C provides the predefined symbol CI. The
symbol CI is always defined when you compile in 32IX mode, but not when you
compile in 64V mode. You can use this symbol with the preprocessor commands #ifdef,
#else, and #endif to make your code correct for both 64V and 32IX mode. (See the
description of the -UNDEFINE compile line option on page 2-34 for more information about
predefined symbols.)

Example 17
This example shows a C function that is called from another language. If you compile
this in 32IX mode, you must declare the storage class of this funcion as fortran in the
definition line. However, this syntax is illegal if the function is compiled in 64V mode.
Note the use of the symbol CI.

#ifdef _CI
fortran short foo()
#else
short foo()
#endif
{

/* Code */
}

USING THE PRIMOS CONDITION MECHANISM FROM C
You can access the PRIMOS condition mechanism from C. Use the PRIMOS routine MKONSP
to set up on-units, and the C library functions setjmpC) and longjmpC) to perform non
local gotos. When a condition is signaled, PRIMOS makes a call on your behalf to the
routine specified as the handler for the condition in a previous call to MKONSP. PRIMOS
passes one argument to the handler, a pointer to the condition stack frame. PRIMOS expects
to be able to transfer this argument in the standard fashion. Therefore, in 32IX mode, the
handler must be declared with storage class fortran.

Example 18
This example shows correct use of the MKONSP routine and of the setjmpC) and longjmpC)
library functions. Note the use of the predefined symbol CI to make the C code
correct for both 64V mode and 32IX mode.

5-21

C Users Guide

Main C program:
#include <stdio.h>
#include <setjmp.h>

static int s, val;
static jmp_buf env;

main()
{
i f de f _C I

fortran void handler();
#else

void handler();
#endif

fortran mkon$p();
fortran sleep$();

/* Set up on-unit for "QUITS" */
mkon$p("QUITS", 5, handler);
val = setjmp(env);
printf("Starting right here!\n");
wh i l e (l)
{

sleep$((long)400);
printf("Looping. . . \n");

}
}

Handler routine:
i f de f _C I
fortran void handler(cfh)
#else
void handler(cfh)
#endif
int *cfh;
{

char c;

printf("\nCaught QUITS condition.\n'
printf("\nContinue? y or n: ");
scanf ("7.c%*c", &c);
if (c != 'n')

longjmp(env, val);
exi t (O);

}

5-22

Interfacing to Other Languages

COMMON BLOCKS
C may access common blocks defined in other languages, and other languages may access
common blocks defined in C. To access a common block created in another language from a
C subroutine, you must declare the common block name with a storage class of extern in
the C routine. To declare a common block in C, declare any variable at level 0 (outside
of any procedure) without any storage class.

Data types must be compatible between the C common block descriptions and the common
block descriptions in the other languages. Therefore, avoid putting either single characters
or pointer types in common blocks shared between C and other languages. You may use
character arrays.

As mentioned previously, all external symbols referenced or defined in 32IX mode have the
G$ prefix prepended to their names. This poses a potential problem. If you define a
common block in 32IX-mode C and reference it from another language, you must explicitly
specify the G$ prefix in your reference. Similarly, if you define a common block in
another language and reference it from 32IX-mode C, you must define the common block
with a G$ prefix in the other language's code. Also, if you use the advanced symbol
placement commands of the SEG loader to move 32IX-mode C common blocks, you must
specify the GS prefix (for example, A/SYM GSEXAMPLE 100).

Example 19
The following example shows one common block created in F77, two common blocks
created in PL/I, and a 64V-mode C function that imports all of them.

F77 declaration for 64V-mode C:
INTEGER*2 S
REALM F
C0MPLEXM6 C
COMMON /F77C0M/ S.F.C

PL/I declaration for 64V-mode C:
del aLonglnteger fixed bin(31) external;
del 1 complex external,

2 real_part float bin(23),
2 cplx_part float bin(23);

64V-mode C function:

LetsGetSomeExternalData()
{

extern struct { short s;
float f;
struct { double r_part;

double c_part; } c; } F77com;
extern int aLonglnteger;
extern struct { float r_part;

float c_part; } complex;
}

5-23

C User's Guide

Example 20
This example is the same as Example 19, except that the C routine is compiled in 32IX
mode. One common block is created in F77, two common blocks are created in PL/I, and a
32IX-mode C function imports all of them. Note the G$ characters in the non-C
declarations, but not in the 32IX-mode C function.

F77 declaration for 32IX-mode C:
INTEGER*2 S
REALM F
C0MPLEX*16 C
COMMON /GSF77COM/ S.F.C

PL/I declaration for 32IX-mode C:
del GSaLonglnteger fixed bin(31) external;
del 1 GScomplex external,

2 real_part float bin(23),
2 cplx_part float bin(23);

32IX-mode C function:
LetsGetSomeExternalData()
{

extern struct { short s;
float f;
struct { double r_part;

double c_part; } c; } F77com;
extern int aLonglnteger;
extern struct { float r_part;

float c_part; } complex;
}

Example 21
If you must declare a common block that is acceptable to both 64V-mode C and 32IX-mode
C, you must code the block with the G$ characters prepended, then use the CI symbol
in the C function to add the G$ characters in 64V mode but not in 32IX mode. This
example is the same as Examples 17 and 18. It is correct for both modes of C. One
common block is created in F77, two common blocks are created in PL/I, and a C function
imports all of them.

F77 declaration:
INTEGER*2 S
REALM F
C0MPLEX*16 C
COMMON /GSF77COM/ S,F,C

PL/I declaration:
del GSaLonglnteger fixed bin(31) external;
del 1 GScomplex external,

2 real_part float bin(23),
2 cplx_part float bi n(23);

5-24

Interfacing to Other Languages

r

} F77com;

} G$F77com;

C function, correct for both modes:
LetsGetSomeExternalData()
{

extern struct { short s;
float f;
struct { double r_part;

double c_part; } c;
#ifdef _CI

#else

#endif
#ifdef _CI

extern int aLonglnteger;
#else

extern int GSaLonglnteger;
#endif

extern struct { float r_part;
float c_part;

if def _CI
} complex;

#else
} GScomplex;

#endif
}

Example 22
The following example shows a common block created in C and accessed by F77 and PL/I
routines. The predefined symbol CI is used to make the C code correct for both 64V
mode and 32IX mode. CCompare Examples 19 and 20 with Example 21, to determine how
to code this for 64V alone or for 32IX alone.)

C declaration of a common block:
#ifdef _CI
short s;
#else
short GSs;
#endif
struct { float f;

long anotherLonglnteger;
#ifdef _CI

} ss;
#else

} GSss;
#endif
main()
{

/* Code for main program */
}

5-25

C User's Guide

F77 routine:
INTEGER*2 S_VALUE
COMMON /G$S/ S_VALUE
REALM F
INTEGER*2 L
COMMON /GSSS/ F.L

PL/I routine:

del GSs fixed bin(15) extern:
del 1 GSss extern,

2 f float bin(23);
2 1 fixed bin(31);

CALLING MIDASPLUS FROM C
You can call the MIDASPLUS data management system from C routines. Be sure that you
understand MIDASPLUS thoroughly before you attempt to access it from C.

You must do the following things when you use the callable interface to MIDASPLUS:

• Use the (default) -NEWFORTRAN option on your CC command line.

• Use the fortran storage class to define all MIDASPLUS routines.

• Use OPENMS and CLOSMS to open and close MIDASPLUS files. Do not use PRIMOS
file system routines, such as SRCHSS and TSRCSS.

• Do not use hard-coded file units when you open MIDASPLUS files. Use the KSGETU
key to allow PRIMOS to select an available file unit.

• Include the files PARM.K and KEYS. They contain flags and keys needed by
MIDASPLUS.

• When you handle MIDASPLUS errors in C programs, use a zero for the alternate
return argument, and check the communications array after the call for any error
conditions. C does not support label variables, so it does not support alternate return
arguments.

Under some circumstances, using zero for the alternate return argument is not satisfactory.
For example, some MIDASPLUS routines, such as PRIBLD, do not support a communications
array argument that is cast to a long integer Cthat is, (long)O). These routines terminate
the calling program with an error message if you use (long)O as the alternate return
argument. Also, some MIDASPLUS routines, such as ADDIS, support the communications
array and classify errors as fatal or nonfatal. These terminate if a fatal error occurs and
0 was used for the alternate return argument.

5-26

Interfacing to Other Languages

Example 23
To handle the error conditions described above, you can write a routine in a language that
supports alternate returns, such as FTN, F77, or PL/I. The following is an example of an
interlude written in FORTRAN for ADDIS. It returns 0 if no fatal error occurs, and 1 if
a fatal error occurs.

FORTRAN interlude to MIDASPLUS:
INTEGERM FUNCTION ADD1$C(FUNIT, BUFFER, KEY, ARRAY, FLAGS,

& I N D E X , F I L E N O , P L E N T H , K E Y L N T)
CALL ADD1$(FUNIT, BUFFER, KEY, ARRAY, FLAGS. $10, INDEX.

& FILENO, PLENTH, KEYLNT)
ADD1SC = 0
RETURN

10 ADD1SC = 1
RETURN
END

Example 24
The following C program accesses a MIDASPLUS file.

/* This is a C program that opens an indexed file, * /
/ * r e a d s a r e c o r d , a n d d i s p l a y s i t . * /

^ i n c l u d e < k e y s > / * P r i m o s I / O k e y s * /
i n c l u d e < p a r m . k > / * F l a g s u s e d b y M I D A S P L U S * /
i n c l u d e < s t d i o . h > / * N e e d e d f o r g e t c h a r () * /

main()
{
/* Data structures: */

fortran closm$(), find$(), openm$();
short int funit, i, status, routine, buffer[43];
short int array[14];
char choice;
static struct thekey {char one[9]; };
static struct thekey findkey;

/* START EXECUTION: */

/* Open file: */
openm$((short)(kSrdwr+kSgetu), "bank", 4, funit, status);
if (status != 0)

abort();

/* Ask for key to be entered from terminal: */
choice = 'Y'; /* Next while is repeated as long as choice is yes */
while ((choice == 'Y') I (choice == 'y'))
{

printf("ENTER KEY VALUE (9 NUMBERS): \n");
i = 0;

5-27

C User's Guide

whi le (i <=8)
{

findkey.one[i] = getchar();
i + + ;

} /* end while */

/* Read and display sequential record: */
find$ (fun i t ,

buffer,
findkey,
array,
(short)(FL$RET + FLSKEY),
(l o n g) 0 , / * A L T R T N - - n o u s e i n C b u t

must be long */
0 , / * S e a r c h o n p r i m a r y k e y * /
0 , / * O b s o l e t e f o r M I D A S P L U S * /
0 , / * R e t u r n a l l d a t a * /
0) ; / * F u l l k e y * /

/* Check error code in array: */

i f (a r r a y [0] = = 0) ; / * D o n o t h i n g , 0 i s n o r m a l * /
else

i f (a r r a y [0] = = 7) / * K e y n o t f o u n d * /
printf("THERE IS NO RECORD WITH THIS KEY\n");

else
{

printf("ERROR -- ASK FOR HELP\n");
abort();

} /* end else */

/* Display what is returned in buffer: */
pr intf("Zs\n", buffer);
pr intf("\n");
printf("D0 YOU WANT TO CONTINUE? Y or N:\rT);
i = 0;
getchar(); /* Throw away last CR */
choice = getchar();
getchar(); /* Throw away last CR */

} /* end while for choice*/

/* Close file: */
closm$(funit, status);
if (status == 0)

printf ("NORMAL END OF RUN");
else

printf ("STATUS IS", "Zd\n", status);

} /* end program */

5-28

Interfacing to Other Languages

Note the following points about this program:

• The program must be compiled with -NEWFORTRAN.

• The MIDASPLUS routines are declared with storage class fortran.

• OPENMS and CLOSM$ are used to open and close the file.

• The K$GETU key is used in the call to OPENMS.

• The header files PARM.K and KEYS are included.

• The argument (long)O signifies to FINDS that no alternate return point has been
specified.

5-29

ADVANCED TOPICS

This chapter contains information about stack frame formats and shortcalls in 32IX-mode
and 64V-mode C. These topics are provided purely for your interest. You do not need to
understand this information to program in C.

C STACK FRAME FORMATS

32IX Mode
C in 32IX mode uses a nonstandard stack frame format. One bit of the flags halfword of
the standard stack frame header (SFH.FLAGS.MBZ) is used to tag 32IX stack frames. This
bit is always 0 for standard stack frames. Setting this bit allows proper handling of the
C 32IX stack frame format, register tracking across procedure calls, and shortcall capability.
This use is similar to the use of the USER PROC bit, which is set by the
-STORE_OWNER_FIELD option of many 50 Series compilers, including C in 32IX mode.

When this extended frame bit is set, it signifies that extension flags exist at SB%+042 and
SB%+043. The three Most Significant Bits (MSBs) of SB%+042 tag the type of information
present in the following halfwords. Currently, only type 0 (all three bits 0) is defined.
Type 0 indicates a C 32IX extended stack frame.

Figure 6-1 shows the stack frame header format for 32IX routines. All numbers are in
octal.

6-1

C User's Guide

00
n a y s ■ une 6tL\a Dii (Lxienaea name bit)

EFH r u _ i _ i r - - i i _ i i - i i _ i• otandard Extended irame 1 leader

042 Tag Save C1 Extended Frame Header I
043 Mask

044

045
XB

Save Area

046 Primary
Save
Area

t M a x 0 9 0 H a l f w o r d s I

Secondary
Save
Area

' M a x 0 2 0 H a l [w o r d s •

0120

0121

Shortcall
Save Mask

Present only if the C1 I j
routine makes calls to |
shortcalled routines i |

0122

0123
Shortcall XB
Save Area

0124 Primary
Save
Area

» M a x 0 2 2 H a l f w o r d s I |

Secondary
Save
Area

i M a x 0 2 0 H a l f w o r d s ! |

0217
Shortcall

Scratch Space

106.01.D7534-4LA

FIGURE 6-1. Stack Frame Header Format for 321X Routines

6-2

Advanced Topics

The format of the first save mask is shown in Figure 6-2.

1 3 5 8 16

042 Tag SC MBZ GR Bits

043 MBZ GR Bits

One Bit for Each GR Saved
One Bit for Each GR Saved

10602D7S34-4LA

FIGURE 6-2. Format of the First Save Mask

The three tag bits are 0, which signifies that this is a C 32IX extended stack frame. The
SC bit is used to tag shortcall frames. This bit is set on entry to all 32IX-generated
shortcall routines and reset on exit. Setting the SC bit signifies that a shortcall routine is
currently executing and that the shortcall frame header (starting at SB%+0120) is active.
The GR bits at halfword SB%+042 comprise the save mask for the secondary save area.
The GR bits at halfword SB%+043 comprise the save mask for the primary save area. All
MBZ bits are reserved and may be used for future expansion of the 32IX frame header.

The format of the shortcall save mask is shown in Figure 6-3.

1 2 8 9 16

0120 MBZ GR Bits
0122 LB MBZ GR Bits

One Bit for Each GR Saved
One Bit for Each GR Saved

106 03.D7S3J-4LA

FIGURE 6-3. Format of the Shortcall Save Mask

The GR bits at halfword SB%+0120 represent the save mask for the shortcall secondary
save area. The GR bits at halfword SB%+0121 represent the save mask for the shortcall
primary save area. The LB bit is used to denote the saving of the link base register
(LB%). This is why the shortcall primary save area can be as many as 022 halfwords
long, rather than 020. All MBZ bits are reserved and may be used for future expansion of
the 32IX frame header.

When a C 32IX routine is entered, all nontemporary registers to be used by the routine are
saved in the primary save area. The extended frame bit and the primary save mask are
set. This is done as a long store, so the secondary save mask is set to 0 also. Currently,
registers R3 to R7 are considered nontemporary and are tracked across procedure calls. Each

6 - 3

C User's Guide

C 32IX routine has a single return point where any saved registers are restored before the
PRTN.

With 32IX C, APs are never used to pass arguments. Rather, arguments are placed on the
caller's stack in contiguous memory. Before the PCL or shortcall, the XB% is set to point
to the start of this argument template. Thus, the current XB% must usually be saved on
the caller's side before a procedure call and restored after the return. The 32IX stack
frame header reserves a long (32-bit) word for this purpose. Because this is a consistent
operation, and because the save location is constant, there is no need to update save masks
here.

Before doing a ZMVD or calling a fortran storage class routine, a C 32IX routine must
save registers that are currently in use and that may be corrupted by the operation. These
saves are done into the secondary save area, and the secondary save mask is set. When the
operation is completed, the secondary save mask is reset to 0.

The primary save area contains registers saved by the callee. The secondary save area
contains registers saved by the caller. Except for unusual conditions (ZMVD, fortran
routines, and intrinsics) all registers are saved by the callee.

The primary save area of a stack frame must be restored when the stack is unwound, via
a longjmrX), past the frame. The restoration is necessary because the primary save area
contains the registers that must be active for the previous frame. The secondary save area
of a frame must be restored only when that frame is the target frame of a stack unwind.

A 32IX C routine that calls a shortcall routine reserves a 0100 halfword block of stack
space at SB%+0120. The first halfwords of this area are used as the stack frame header
for the shortcalled routine, because it does not have its own stack frame. The rest of the
space is used for automatic variables.

The shortcalled routine's stack frame header has the same format and meaning as a normal
32IX C stack frame header, but the former starts at SB%+0120 rather than SB%+042.
When any C-32IX-generated shortcalled routine is entered, the shortcalled bit (SC bit of
SB%+042 of the extended stack frame) is set. When the shortcalled routine returns, the bit
is reset.

During stack unwind, if the shortcalled bit of a frame is set, the stack frame header in
the shortcall area is processed before the normal stack frame header. This handles the case
of a shortcall routine longcalling another routine that then calls longjmp() and causes a
stack unwind.

64V Mode
The following example shows a brief but complete C program.

6 - 4

Advanced Topics

main(
{

int i;
char c;
float f;
double d;

f o o (i , c , f , d) ;
}

foo (i,c,f,d)
int i;
int c;
double f;
double d;
{

/* Any code here */
}

This program can be compiled and loaded with either BIND or SEG. Figure 6-4 represents
the runtime environment during execution of the program.

SEG's Stack
Frame SEG

Return
Information

Extended
Stack
Frame
Header

MAIN'S Stack
Frame i 32 bits

c 16 bits
f 32 bits

d 64 bits

i copy 32 bits
c copy 32 bits
f copy 64 bits

d copy 64 bits

Return
Information

Foo's Stack
Frame

Extended
Stack
Frame

Header

APtoi
AP toe
APtof
AP tod

Standard PRIMOS Stack
Frame Header, 42 (octal)
Halfwords

No Argument Pointers

Dynamic Data for MAIN

Copies of each argument
for pass-by-value. Note
type conversions: c to long,
f to double

42 (octal) Halfword Header

Argument pointers tothe copies of each of
the four passed arguments

I06.0J.D7534-4Ui

FIGURE 6-4. 64V-mode Runtime Environment
6 - 5

C User's Guide

The subroutine foo could perform another procedure call and pass any of its parameters on
to the called procedure as arguments. In that case, a new copy of each parameter would
be made and the passed argument pointers would point to these copies. This standard, pass-
by-value method works correctly in all normal cases.

Problems arise, however, if a routine that accepts many arguments is called with too few
arguments. The called routine attempts to pass all of its arguments on to yet another
routine. When the middle routine attempts to copy its arguments to pass them by value,
an argument is missing, so a pointer fault occurs.

The following example shows a program with such a bug.

buggy()
{

er ror (fo rmat ,a l ,a2) ;
}

error(format,a l ,a2,a3,a4,a5)
char *format;
{

fprintf(stderr, format, al, a2, a3, a4, a5);
}

When the function called error attempts to copy a 3 for the call to fprintf(), a pointer
fault is raised. This problem exists in 64V mode only, since 32IX-mode C does not use
argument pointers.

Avoid calling a function with more or fewer parameters than the function expects. (See
Chapter 7.) If you must code in this manner, however, you can avoid problems in 64V
mode by using the -NOCOPY command line option. (-COPY is the default.) This causes
function parameters passed on to other functions to be passed by reference rather than by
value. The two compile line options -NOCOPY and -COPY exist in 64V mode only.

SHORTCALLS
For general information about the shortcall mechanism, see the Assembly Language
Programmer's Guide and the Instruction Sets Guide.

Shortcalls From 32IX Mode
When you use the command line option -SHORTCALL name in 32IX mode, the compiler
generates a JMP rather than a PCL to the external routine name. The normal C-style
(pass-by-reference) argument template is built up before the JMP is generated. The address
of the start of the argument list is placed in the XB% register (via an EAXB). The return
address for these routines is placed in RO before the JMP. These shortcalled routines may
be written in PMA, or they may be written in C and compiled in 32IX mode with a
-SHORTCALL command line option specifying the name of the routine in the source file
that is to be generated as shortcallable.

6-6

Advanced Topics

Unlike other 50 Series language implementations of shortcall, 32IX C shortcalled routines
have an ECB. Calls to the routines are made indirectly through the first halfword of the
ECB using a JMP rather than a PCL. All calls to shortcalled routines pass the address of
the shortcalled routine's ECB in a register (Rl). The shortcalled routine can thus find the
value for its link base (by looking in its ECB) and create one for itself. This involves
saving the current link base on entry and restoring it on exit from the shortcalled routine.
A bit in the shortcall primary save mask indicates that the link base has been saved. If
the shortcall routine does not use any static or external data, the generated code does not
save and restore the previous link base value.

The ECBs of shortcalled routines must be tagged so that the determination of the type of
call to make (short or long) can be made at runtime. At runtime, the address of
shortcalled routines is taken, and calls are made through pointers to functions that may
point to either shortcalled or longcalled routines. The tag for ECBs belonging to shortcalled
routines is the value -1 in the number of arguments field. The use of an invalid number
in this field does not cause any problems because the compiler never generates a PCL
through a shortcalled routine's ECB. This mechanism offers a great deal more flexibility
than other shortcall implementations.

Taking the address of static shortcalled routines is permitted. The address of a static
shortcalled routine is the address of the routine's ECB, as is the address of other routines.
However, static shortcalled routines assume that they can share the link base of their caller.
Unlike other shortcalled routines, static shortcalled routines do not expect their ECB address
to be passed to them. Thus, the address of a shortcalled routine cannot be passed to and
called from another routine because the wrong link base would be referenced. This is
consistent with Cs concept of static.

The following code sequence is used by 32IX C to perform shortcalls. Note that expanded
listings produced by 32IX C use Rx+<offset>,* to denote GRR addressing, that is, register
indirect through Rx. However, this format is not accepted by Prime Macro Assembler
(PMA).

<Create the argument template by copying
any arguments into contiguous memory>

EAXB <first argument) <-- Set "argument pointer"
LIP R1,<IP to <name>s ECB>
L R x . R l + 0 0 , * (G R R)
EAR R0,<return address>
J M P R x + 0 0 , * (G R R)

If the routine to be called is in the same source file as the caller, the last two lines are
EAR R0,<return address>
JMP <firs t ins t ruc t ion)

6-7

C User's Guide

The following code sequence is used by 32IX C to return from shortcalled routines.
JMP RO+OGV GRR)

or, if coding in PMA (with no GRR):
ST R0,<temp>
JMP <temp>,*

The following restrictions apply to all shortcalled routines:

• They may directly call other shortcalled routines. This is implemented by longcalling
a dummy routine that then shortcalls the target routine.

• They have limited automatic data space.

Shortcalled routines may call setjmp(), the C library equivalent of MKLB$F. However, a
bit in the label, the fault bit of the target PB%, must be set. Setting this bit tells
longjmp(), the C library equivalent of PL1$NL, that it is resuming execution in shortcalled
code. When longjmp() resumes execution, it restores registers from the secondary save area
in the shortcall stack frame header (starting at halfword 0120). (For more information
about setjmp() and longjmp(), see page 4-54).

The format of a C 32IX label variable created by setjmp() is incompatible with the format
created by other languages, using MKLB$F, and by 64V-mode C. This incompatibility
prevents a label from being created in a C 32IX routine and then passed to another
language that could try to do a PL1$NL through the passed label. All nonlocal gotos to C
32IX stack frames go through longjmp() so that registers are restored correctly.

The format of the C 32IX label variable is shown in Figure 6-5. Note that the last two
halfwords of the label variable are the reverse of the standard label variable.

Halfword Number of Target PB%

Segment Number of Target PB%

Halfword Number of Target SB%

Segment Number of Target SB%

I06.05.D7534-4LA

FIGURE 6-5. Format of the C 32IX Label Variable

The implementation of longjmp() for 32IX C is more complicated than simply calling
PL1$NL. On a nonlocal goto, registers are restored as the stack is being unwound. The
sequence of steps is as follows:

1. longjmp() walks back the stack to the target frame specified by the SB% entry in
the target label. As it does so, longjmp() examines each stack frame passed.

2. longjmp() then builds a structure containing the state of the register file that should
be reinstated before execution is continued in the target frame.

6 - 8

Advanced Topics

3. The PB% entry in the label variable is modified to point back into longjmp().

4. The stack is unwound by a call to PL1SNL.

5. The register file is restored.

6. longjmp() does a JMP to the original target PB% location, and execution continues in
the target frame.

Shortcalls From 64V Mode
If the compile line option -SHORTCALL name is used in 64V mode, the compiler generates
a JSXB rather than a PCL to the external routine name. The normal C-style (pass-by-
reference) argument template is built up, and the address of the start of the argument list
is placed in the L register (via an EAL) before the JSXB is generated. The shortcalled
routine must be written in PMA. The following example shows a program that calls the
routine SC.

main()
{

int i ;
double d;
char *p;
s c (i, p, d);

}

If this program is compiled in 64V mode with the command line option -SHORTCALL SC,
the following code is generated.

<-- Create argument template.LDL
STL SBZ*OFFSET+0
LDL
STL SB%*0FFSET+2
LDA P + 2
STA SB2+0FFSET+4
DFLD
DFST SBZ+OFFSET+5
EAL SBZ+OFFSET+0
JSXB SC,*

Point L to first argument
Perform the shortcall.

6-9

PORTABILITY CONSIDERATIONS

The first section of this chapter describes features of PRIMOS C that may differ from those
of other C implementations.

The second section of this chapter, PRIMOS C Library Functions, contains two lists. The
first list compares the functions in the PRIMOS C library with like-named functions in
other C implementations. The second list compares functions not provided in the PRIMOS
C library with suggested alternative functions that are available in the PRIMOS C library.

FEATURES OF PRIMOS C
This section describes features of 50 Series machines and of PRIMOS C that may differ
from those of other implementations. You should take these features into consideration
whenever you port C applications to and from PRIMOS C.

Character Set
The basic character set used internally under PRIMOS is the ANSI, ASCII 7-bit set with the
8 parity bit always on. This character set, known as Prime ASCII, is a proper subset of
the Prime Extended Character Set (Prime ECS). If your terminal or printer supports Prime
ECS, the 8th bit is significant. For terminals and printers that do not support Prime ECS,
symbolic characters or Prime ASCII values (decimal 128-255) must be used within programs
for character comparisons, and characters may not be used as array indices 0-127. Note
that, on a 50 Series machine, a NULL character pointer does not point to a zero. Some
code written for other machines uses the 8th character bit as a flag. Such code must be
modified for terminals that do not support Prime ECS. (For information about Prime ECS,
see Appendix F.)

7-1

C User's Guide

Blank Compression and Null Padding in ASCII Text Files
On 50 Series machines, ASCII text files are stored on disk with multiple blanks compressed
and lines padded to an even number of bytes with the NULL character. All utilities that
manipulate files as standard Prime ASCII text manage this blank compression in a manner
that is transparent to the user. These utilities include

• C library functions that explicitly manipulate ASCII files and data

• System subroutines that explicitly manipulate ASCII files and data

• PRIMOS text editors

Problems can arise when programs that manipulate ASCII text files using direct access or
binary file I/O methods are ported from other machines to a 50 Series machine. Neither
direct access nor binary file I/O methods manage the blank compression for the user. See
the discussion of fopen(), fseek(), and ftell() in Chapter 4, Using the C Library.

Text Files Generated by Programs
Some PRIMOS utilities require their input files to have a specific format. Prime EMACS,
for example, expects text files to consist of lines terminated by newline characters (0212).
If your program generates a text file that lacks newline characters, you cannot use EMACS
to view that file.

Parameters Passed to a Function
The number of parameters passed to a function must be equal to the number of parameters
expected by that function. On some other machines, you may write code in which a
function is called with more or fewer parameters than the function actually expects. Such
code may work correctly on the 50 Series, but only if the missing or extra parameter is
never referenced. A program fails when it tries to reference a parameter that was not
supplied. A function that is expecting an integer parameter does not assume 0 as a default.

Function Return Values
On some other machines, programs run correctly if function return value data types are
left undeclared. For example, a program may contain a function that returns a pointer. If
this function is not explicitly defined as returning a pointer, the default return value is
type int. Such a program may run correctly on some machines, but not on a 50 Series
machine. All functions must be declared with the proper return value data type to insure
proper operation.

7-2

Portability Considerations

Size of Pointers
When a program is compiled in 64V mode, its pointers are 48 bits long. An int is 32 bits
long. In 32IX mode, pointers and ints are the same size, 32 bits. The pointer formats are
shown in Appendix E.

Casting Between Pointer and Integer Types
Under some unusual circumstances, you may have to cast a pointer to an integer type, or
an integer type to a pointer. On 50 Series systems, pointers are complex data types. If
you perform ordinary casts, such as

ptr = (char *) num; /* Changes the bit pattern */
num = (int)ptr; /* Changes the bit pattern */

where num is an integer type and ptr is a pointer, the C compiler changes the bit pattern
of the value. If you add a level of indirection, as shown below, the compiler does not
alter the bit pattern.

ptr = *(char **)#
num = *(int *)&ptr;

High Bit of a Pointer or Character
Some code written for other machines uses the most significant bit of a pointer or character
as a flag. You cannot use the high bit of a pointer or character as a flag on the 50
Series.

Null Pointers
On some other machines, a NULL pointer points to address zero or to a memory location
guaranteed to contain zero. On 50 Series machines, no user has access to word zero of
segment zero. In the following example, a pointer is set to zero, then dereferenced. Such
code fails and raises the condition ACCESS_VIOLATIONS on a 50 Series machine.

mam() /* This function won't work! */
{
int *p;
p = (int *)0; /* p is now a NULL pointer */
if (*p = 0) printf("Hello world.\n");

else printf("Goodbye world.\n");
}

Segment-spanning Data Objects
On 50 Series machines, you cannot reference an atomic data object that is split across a
segment boundary. Atomic data objects include types char, short, int, long, float, double,
and their unsigned counterparts.

7-3

C User's Guide

Under certain circumstances, however, you can reference a non-atomic data object — a string,
array, or structure — that spans a segment boundary. If your program contains an array
of structures that exceeds 128K bytes, a structure member may be split across the boundary
if it is not aligned according to its size.

In 64V mode, if you plan to use arrays of a struct, align the data objects by padding the
struct with extra members. Align the types int, long, and float, for example, on
addresses that have offsets that are multiples of 4. See Appendix E for details about data
formats. In 32IX mode, you can use the compiler option -HOLEYSTRUCTURES to align
these data types for you.

Arrays of type char may not span a segment in 64V mode, although they may do so in
32IX mode.

If your program contains arrays that span a segment, use the -BIG compiler option. In
32IX mode, if a string argument to strncpy(), memcpy(), or strfil() is likely to span a
segment, use the -SEGMENTSPANCHECKING compiler option in conjunction with either
-INTRINSIC or -STANDARDINTRINSICS. See Chapter 2 for more information.

Command Line Arguments
PRIMOS C allows you to pass arguments to a program from the command line. The
argument handling is functionally the same as in the UNIX operating system. However,
you must link the library CCMAIN or ANSI_CCMAIN before your main program when
you use SEG or BIND. See Chapter 3 for more information. You can use numerical
command line arguments to a program, provided you use BIND, not SEG, to link the
program. When you execute a SEG-loaded program, numerical arguments on the command
line are interpreted as options to the SEG command itself.

Input and Output Buffering
Under the UNIX operating systems, the high-level I/O routines fread, fwrite, fscanf, and so
forth, are buffered, but the low-level I/O routines read and write are unbuffered. The
situation is more complex in the case of the PRIMOS C library functions because more than
one level of buffering exists.

Like their UNIX counterparts, fread(), fwrite(), and the other high-level C I/O functions
use a high-level buffer that is automatically allocated when you call fopen(). You can
eliminate this level of buffering from the high-level I/O functions by calling setbuf() with
a buffer value of NULL after you call fopen(). The low-level functions read() and
write(), like their UNIX counterparts, do not use this level of buffering.

By default, all C library I/O functions employ very low-level disk read and write
buffering as a performance enhancement. Ordinarily, this level of buffering is transparent.
You can see it, however, if you quit out of an executing program and type STAT UNIT.
For example, the following program reads 80 characters from a file, then prompts you to
quit.

7-4

Portability Considerations

#include <stdio.h>
main()
{

char buf[150], temp[80];
int i, filelD, open(), fread();
i f ((fi lelD = open("testfile\ 0)) == -1)

{ pr intf("file system error Zd\n", errno);
e x i t (e r r n o) ;

}
i = read(fileID, buf, 80);
pr int f ("Xd bytes read from testfi le. \n", i) ;
puts("Hit C0NTR0L-P, then type STAT UNIT");
ge ts (temp) ;

}

When you quit out of the program and type STAT UNIT, you see the following display:
U s e r Y O U S Y S T E M

F i l e F i l e O p e n F i l e
U n i t P o s i t i o n M o d e T y p e R W l o c k T r e e n a m e

3 1 0 0 0 0 0 1 0 2 4 R S A M N R - 1 W < D I R > T E S T F I L E
3 2 0 0 0 0 0 0 0 0 0 V M r D A M N R - 1 W < D I R > T E S T B U F. R U N

Note that you are positioned more than 80 bytes into the file TESTFILE.
You can disable this level of read and write buffering by using the additive keys 040000
and OlOOO, respectively, as openMode values when you call open(). If you need to use
high-level I/O functions, such as fread() and fwriteC), with no buffering of either kind,
you must use a series of function calls, such as the following:

filelD = open("mydir>myfile", 040000 I 01000);
filePointer = fdopen(filelD, "r");
setbuf (fi lePointer,NULL) ;

Interlanguage Calling
In general, the mechanisms used on other machines are not the same as those needed for
the 50 Series. See Chapter 5 for a full discussion of these mechanisms.

Macro Preprocessor

Nested Include Files: In PRIMOS C, include files may be nested up to 20 levels deep.

#define Commands: Unlike some C preprocessors, the macro processor in non-ANSI
PRIMOS C performs syntax checking on the arguments to #define commands, instead of
waiting until the macro is expanded.

For example, non-ANSI C accepts only single character arguments in single quotation marks
in #define commands. You cannot use a multiple character argument in single quotation
marks within a macro definition. For example, the definition

#define ctrl(letter) ('letter' & 077)

is incorrect and results in an error message. Instead, use the definition

7-5

C User's Guide

#define ctrl(L) ('L' & 077)

which expands, for example, ctrl(G) to ('G' & 077).

Similarly, commands like

#define HUGE 12345678901234567890
#define HEX Ox
#define OCT 0778
#define CH ' t

will draw compiler error messages if -ANSI is not specified. If -ANSI is specified, these
macros will draw errors only when their expansion results in a syntactically invalid
program.

A #define macro may have up to 128 formal parameters.

Character Boundary
The boundary for a character on the 50 Series is a 16-bit halfword, not a byte. Character
arrays, however, are packed two characters per halfword. Therefore, adjacent character
variables do not ordinarily reside on adjacent bytes unless they are members of an array.

Some code written for other machines assumes that adjacent characters always reside on
adjacent bytes. If you wish to port such code to a Prime machine, use the -PACKBYTES
compiler option to pack adjacent characters within structures or unions. For information
about -PACKBYTES, see Chapter 2.

Note that character arrays still start on an even 16-bit halfword boundary, whether or not
the code is compiled with the -PACKBYTES option. Moreover, since the C language treats
a multi-dimensional character array as an array of arrays, each array starts on an even
boundary. This results in "holes" between dimensions if the nth dimension contains an odd
number of character elements.

Promotion of Character Arguments
If the declaration of a function is old-style (as defined by the ANSI standard), all character
arguments are promoted to int when they are received as a parameter to a function.
However, taking the address of a char argument will yield the address of the int in
which it is stored. If the user desires to use the address of the actual character, then the
char parameter should be assigned to a locally declared char variable. Then the address of
the locally declared char variable can be used for whatever the user desires.

7-6

Portability Considerations

Identifier Names
In PRIMOS C, identifier names are significant for a maximum of 32 characters. This may
cause a problem if a program written on a 50 Series machine is ported to a system on
which only eight characters are significant.

Vertical Tab Character
The vertical tab character \v is not recognized by the PRIMOS C compiler. If used, this
construct yields a lowercase v.

Case Sensitivity
The PRIMOS C compiler is case sensitive, but neither PRIMOS itself nor the BIND, SEG, and
DBG utilities are case sensitive. Therefore, the PRIMOS implementation of C is not case
sensitive with respect to external (common) identifier names. In the following program, for
example, varl and VAR1 are interpreted as the same variable:

int varl;
int VAR1;
main()

{
varl=10;
VAR1=20;
printf("varl=%d VAR 1 = 7.6", varl .VAR1);
}

On a 50 Series machine, the output of this program is

varl=20 VAR1=20

Quadruple Precision Floating Point Support
PRIMOS C supports quadruple precision floating point numbers, which are declared long
double. The -ANSI compiler option includes support for the long double data type. If
the -ANSI option is not used, then include the -QUADCONSTANTS compiler option to
enable support for quad-precision constants; use the -QUADFLOATING option to enable
support for quad-precision variables.

PRIMOS C LIBRARY FUNCTIONS
This section contains two lists of library functions in alphabetical order. The first list
compares the functions in the PRIMOS C library with like-named functions in other C
implementations. The second list pairs functions not provided in the PRIMOS C library
with suggested alternative functions that are available in the PRIMOS C library.

7-7

C User's Guide

PRIMOS C Library Functions Compared With Other C Implementations
abort()

Does not generate a core dump.

abs()
Equivalent.

access()
Modes may differ slightly.

acos()
Equivalent.

asin()
Equivalent.

assert()
Equivalent.

atan()
Equivalent.

atan2()
Equivalent.

atof()
Equivalent.

atoi()
Equivalent.

atol()
Equivalent.

cabs()
Equivalent.

calloc()
Equivalent.

ceil()
Equivalent.

cf ree()
Equivalent.

chdir()
Equivalent.

chrcheck()
Specific to the PRIMOS C library.

7-8

Portability Considerations

clearerr()
Equivalent.

close()
Equivalent.

copy()
Specific to PRIMOS C library. Similar functionality is provided by link() in the UNIX
operating systems.

cos()
Equivalent.

cosh()
Equivalent.

creat()
Modes are different. Use open(), not creat(), whenever possible.

ctime()
Format and length of string may differ. Some installations may not support Daylight
Saving Time. Consult your System Administrator.

cuserid()
Equivalent.

delete()
Specific to the PRIMOS C library. Similar functionality is provided by unlink() in the
UNIX operating systems.

ecvt()
Equivalent.

cxit()
The parameter status must be passed.

exp()
Equivalent.

f abs()
Equivalent.

fcloseC)
Equivalent.

fcvt()
Equivalent.

fdopen()
Equivalent.

7-9

C User's Guide

f dtm()
Specific to the PRIMOS C library. The information provided by this function is a subset
of that provided by stat() in the UNIX operating systems.

feof()
Equivalent.

ferrorC)
Equivalent.

f existsC)
Specific to the PRIMOS C library.

f f lush()
Equivalent.

fgetc()
Equivalent.

f getname()
Returns a PRIMOS pathname.

f gets()
Equivalent.

f ileno()
Equivalent.

f loor()
Equivalent.

f open()
Access modes differ.

f p r i n t f ()
Equivalent.

f putc()
Equivalent.

f puts()
Equivalent.

f read()
Equivalent.

f ree()
Equivalent.

freopen()
Access modes differ.

7-10

Portability Considerations

f rexp()
Equivalent.

f rwlock()
Specific to the PRIMOS C library.

f scanf ()
Extended. Conversion specification characters differ.

f seek()
A valid byte position must be obtained with ftell() when fseek() is used with ASCII
files.

fsize()
Specific to the PRIMOS C library. The information provided by this function is a subset
of that provided by stat() in the UNIX operating systems.

f stat()
Equivalent.

f tell()
Return value differs when used with ASCII files because of disk file space compression.

f time()
Equivalent. Some installations may not support Daylight Saving Time. Consult your
System Administrator.

f type()
Specific to the PRIMOS C library. Similar information is provided by stat() in the
UNIX operating systems.

fwr i te ()
Equivalent.

g$amiix()
Specific to the PRIMOS C library.

getc()
Equivalent.

getchari)
Equivalent.

geth()
Specific to the PRIMOS C library.

getmod()
Specific to the PRIMOS C library.

getname()
Returns a PRIMOS pathname.

7-11

C User's Guide

gets()
Equivalent.

getw()
Equivalent.

gterm()
Specific to the PRIMOS C library. Similar information is provided by ioctl() in the
UNIX operating systems.

gvget()
Specific to the PRIMOS C library.

gvset()
Specific to the PRIMOS C library.

hypot()
Equivalent.

index()
Equivalent. (Synonym for strchr().)

isalnum()
Equivalent.

isalphaC)
Equivalent.

isasciiC)
Equivalent.

isatty()
Specific to the PRIMOS C library.

iscntrlC)
Equivalent.

isdigit()
Equivalent.

isgraphC)
Equivalent.

islowerC)
Equivalent.

ispasciiC)
Specific to the PRIMOS C library.

isprint()
Equivalent.

7-12

Portability Considerations

ispunctC)
Equivalent.

isspaceC)
Equivalent.

isupperC)
Equivalent.

isxdigitC)
Equivalent.

IdexpC)
Specific to the PRIMOS C library.

localtimeC)
Equivalent, but some installations may not support Daylight Saving Time. Consult your
System Administrator.

logC)
Equivalent.

loglOC)
Equivalent.

longjmpC)
Equivalent.

lsdirC)
Specific to the PRIMOS C library.

lseekC)
Extended. New values for the direction argument allow positioning by physical disk
record.

mallocC)
The first byte of the allocated area is always aligned on a 16-bit halfword boundary.

mkdirC)
Takes one argument, a PRIMOS pathname.

modfC)
Equivalent.

moveC)
Specific to the PRIMOS C library. Similar functionality is provided by calling link()
followed by unlink() in the UNIX operating systems.

openC)
Values for openMode differ. Additive keys provide extended functionality.

7-13

C Users Guide

perrorC)
Equivalent.

powC)
Equivalent.

primospathC)
Specific to the PRIMOS C library.

printfC)
Equivalent.

putcC)
Equivalent.

putcharC)
Equivalent.

putsC)
Equivalent.

putwC)
Equivalent.

randC)
Equivalent.

readC)
Equivalent.

reallocC)
May be used only to change the size of currently allocated space.

rewindC)
Equivalent.

rindexC)
Equivalent. (Synonym for strrchrC).)

scanfC)
Extended. Conversion specification characters differ.

seekC)
Equivalent to lseek().

setbuf()
Equivalent.

setjmpC)
Does not return a value in 64V mode. Equivalent in 32IX mode.

7-14

Portability Considerations

setmodC)
Specific to the PRIMOS C library. Similar functionality is provided by chmod() in the
UNIX operating systems.

signalC)
Equivalent.

sin()
Equivalent.

sinhC)
Equivalent.

sleepC)
Equivalent.

sprintfC)
Equivalent.

sqrtC)
Equivalent.

srandC)
Equivalent.

sscanf ()
Extended. Conversion specification characters differ.

statC)
Equivalent.

stermC)
Specific to the PRIMOS C library. Similar functionality is provided by ioctl() in the
UNIX operating systems.

strcatC)
Equivalent.

strchrC)
Equivalent.

strcmpC)
Equivalent.

strcpyC)
Equivalent.

strcspnC)
Equivalent.

strlenC)
Equivalent.

7-15

C U s e r ' s G u i d e ' ^ ^

s t r n c a t C) J ^ * t
Equivalent.

strncmpC)
Equivalent.

strncpyC)
The specified number of bytes is copied, regardless of whether a NULL byte is
encountered.

strpbrkC)
Equivalent.

strrchrC)
Equivalent.

strspnC)
Equivalent.

systemC)
The argument, command, will differ because PRIMOS and other operating systems (such
as UNIX) use different commands for the same operation.

tan()
E q u i v a l e n t . ^ ^ ^

tanhC)
Equivalent.

tellC)
Specific to the PRIMOS C library. Similar to ftell(), but used with files opened with
open().

t i m e C) - < ^ ^
Returns only the time, in seconds. Some installations may not support Daylight Saving ^
Time. Consult your System Administrator.

timerC)
Specific to the PRIMOS C library. Similar functionality is provided by alarm() in the
UNIX operating systems.

tmpnamC)
Equivalent.

toasciiC)
Equivalent.

tolowerC)
E q u i v a l e n t . « ^ ^

tolowerC)
E q u i v a l e n t . ^ ^ ^

7-16

Portability Considerations

topasciiC)
Specific to the PRIMOS C library.

toupperC)
Equivalent.

__toupper()
Equivalent.

ungetcC)
Equivalent.

writeC)
Equivalent.

Library Functions Not Supported in PRIMOS Compared With Suggested
Alternatives

Non-suppot
Function

ted Similar Function Available
in the PRIMOS C Library

alarm!) timerC)
chmod() setmodC)
ioctlC) gtermC), stermC)
linkC) copyC), moveC)
unlinkC) deleteC), moveC)

7-17

USING ANSI C

This chapter provides the information you need in order to compile, link, and run PRIMOS
C programs that conform to the ANSI C standard. It does not provide a reference guide to
the ANSI C language. To write standard-conforming programs, consult an appropriate
reference work. The two most authoritative references to ANSI C are described below.

The Standard: The definitive reference work for the C language is the ANSI standard,
American National Standard for Information Systems -- Programming Language C,
X3.159-1989. To obtain a copy of this document, write to the American National Standards
Institute, 1430 Broadway, New York, New York 10018.

K&R 2: Almost equally definitive is the second edition of The C Programming Language,
by Brian W. Kernighan and Dennis M. Ritchie (Englewood Cliffs, N.J.: Prentice-Hall, 1988),
informally known as K&R 2. This book appeared before the ANSI standard was approved,
but the information in it is consistent with the standard.

The changes that were made to the C language for ANSI are briefly described below.

• New header files are available containing function prototypes for all of the ANSI
library functions, new constants, and new structures.

• The behavior of several existing library functions has been modified, and many new
functions are now available.

• A new processor command #error has been introduced which produces a diagnostic
message while preprocessing is performed.

• Two processor operators (# and ##) have been added which surround a parameter
with quotes and concatenate adjacent tokens, respectively.

• Parameters inside macro strings are no longer replaced.

• The new keywords const, volatile, and signed have been added.

O The type qualifier const specifies that the value of an object cannot be changed.

O The type qualifier volatile announces that optimization should be suppressed for
an object.

8-1

C User's Guide

o The type-specifier signed can be applied to int or char, but is mainly used to
force char objects to carry a sign.

• New escape sequences are available for character constants, such as the hexadecimal
character representation \xhh.

• A quad precision data type, long double, is available.

• Rules have been established about mixing pointers of different types without the use
of casts.

• Ranges of arithmetic types for a particular implementation are given in the headers,
<limits.h> and <float.h>.

• Function prototyping has been added, providing error detection of arguments across
function calls. (The mixture of function prototyping and the old style of function
declaration should be avoided.)

• Variable-length argument lists using the ellipsis notation ", ..." and the macros in the
header <stdarg.h> are also new.

• Name spaces of identifiers have been changed such that labels are placed in a separate
name space.

• Unions may be initialized. The initializer refers to the first member.

• Automatic structures, unions, and arrays may be initialized.

The first two sections of this chapter describe how to write, compile, link, and run C
programs that conform to the ANSI standard. The third section describes how to avoid
some potential problems in converting older PRIMOS C programs into standard-conforming
programs. The fourth section provides a quick alphabetical reference to ANSI C library
functions.

WRITING AND COMPILING STANDARD-CONFORMING C
PROGRAMS
This section explains

• How to use the standard ANSI C header files

• How to use the -ANSI option to check the syntax of your program

• How to use the -EXTRACTPROTOTYPES option to obtain a header file of new-style
function declarations

8-2

Using ANSI C

Using the Standard Header Files
The C library functions and the header files that define them are specified by the ANSI C
standard. The header files are located in the directory SYSCOM. Table 8-1 lists these
header files and the routines that use them. For information on how PRIMOS C handles
header files, see Chapter 2.

Note
Some ANSI C library function declarations are not in the same header file as their
non-ANSI C equivalents. Some functions did not have a function declaration in a
header file in non-ANSI C, but do in ANSI C. To find out whether you need to
modify any #include commands in your program, compare the description of the
function in Chapter 4 with the description in the last section of this chapter.

TABLE 8-1. ANSI C Header Files

Header File Contents of Header File

ASSERT.H.INS.CC

CTYPE.H.INS.CC

ERRNO.H.INS.CC

FLOAT.H.INS.CC

LIMITS.H.INS.CC

LOCALE.H.INS.CC

MATH.H.INS.CC

SETJMP.H.INS.CC

SIGNAL.H.INS.CC

STDARG.H.INS.CC

STDDEF.H.INS.CC

STDIO.H.INS.CC

STDLIB.H.INS.CC

STRING.H.INS.CC

TIME.H.INS.CC

Diagnostic macro definition
Character classification functions

Error condition macros

Constant definitions for floating-point type
sizes

Constant definitions for integral type sizes

Numeric value formats and macros

Mathematical functions

Non-local jump functions

Signal handling functions
Variable argument macros

Miscellaneous types and macros

Input and output functions

Utility functions

String handling functions
Date and time functions

Many of these files (STDIO.H.INS.CC, for instance) are the same for both standard-
conforming and non-standard-conforming programs. The files use the preprocessor macro

STDC (STanDard-Conforming) to separate standard-conforming and non-standard-

8-3

C User's Guide

conforming header information. If a program is compiled with the -ANSI option,
STDC is defined as 1, and the appropriate parts of the header file are used.

Therefore, the preprocessor command

#include <stdio.h>

pulls in different parts of the file STDIO.H.INS.CC depending on whether or not the -ANSI
option was specified.

SYSCOM also contains the following nonstandard header files:

PRIME_ECS_CHARS.H.INS.CC
STAT.H.INS.CC
STRINGS.H.INS.CC
TERM.H.INS.CC
TIMEB.H.INS.CC

For information about using Prime ECS, see page 4-2 and Appendix F.

Syntax Checking: The -ANSI Option
Use the -ANSI compiler option to check your program's syntax for violations of the ANSI
standard. You must use -ANSI in conjunction with the -32IX option.

OK, CC ANSIPROG -32IX -ANSI

The -ANSI option is described in Chapter 2. Information about the -ANSI option can also
be found in the discussions of the following options in Chapter 2: -INTRINSIC,
-PREPROCESSONLY, -STANDARDINTRINSICS.

Function Declarations: The -EXTRACTPROTOTYPES Option
The greatest change that the ANSI standard has made to the C language is the addition of
a new syntax for function declarations and definitions. Although the standard allows
programs to use the old style of function declaration and definition, users are encouraged to
use the new style.

The -EXTRACTPROTOTYPES option makes it easier for you to convert your programs to
the new style. If you compile an old-style C source file with this option, the compiler
creates a header file with new-style declarations for all the functions in your source file.

For example, suppose your program contains three function definitions:
main()

funcl(myvar)
int myvar;

func2(myptr)
int *myptr;

8-4

Using ANSI C

If you name the source file EX.C, then the command

OK, CC EX -32IX -EXTRACTPROTOTYPES

creates a header file, EX.H, that contains the following declarations:

long int main(void);
long int funcl(long int);
long int func2(long int *);

To add the new-style function declarations to your program, put the preprocessor command

#include "ex.h"

before any of the function definitions in your source file.

Caution
If you use this option, do not name one of your include files program-name.U; if you
do, it will be overwritten.

Function Definitions: If you want to make your function definitions conform to the
standard, you must change them by hand. New-style definitions for main(), funcl(), and
func2() look like this:

int main(void)

int funcl(int myvar)

int func2(int *myvar)

LINKING STANDARD-CONFORMING C PROGRAMS
Use BIND, not SEG, to link a program that has been compiled with the -ANSI option. If
you use SEG, you cannot link in the ANSI C runtime libraries.

Use the following steps to link your program with BIND:

1. After you invoke BIND, give the subcommand

: LI ANSI_CCMAIN

to link in the ANSI libraries. If you give the subcommand LI CCMAIN, you must
use the -AnsiLibs command line option (discussed on page 8-7) in order to access the
ANSI libraries when you execute your program.

2. To load each compiled program unit, give the subcommand

: LO sourcename

where sourcename is the name of the program unit.

8-5

C User's Guide

3. BIND expects your main routine to be named main(). If your main routine is not
named main(), use the MAIN subcommand to tell BIND which routine is your main
routine.

: MAIN G$routine-name

4. To link in the C DYNT library, give the subcommand

: LI C_LIB

5. If you do not receive a BIND COMPLETE message, give the subcommand

: U
to load the system libraries.

6. If you still do not receive a BIND COMPLETE message, give the subcommand

: MAP -UN

to obtain a list of unresolved references. You can then exit BIND by giving the
QUIT subcommand.

7. When you receive a BIND COMPLETE message, give the subcommand

: FILE

to save your runfile and exit from BIND.

Below is an example of a BIND command line for ANSI C programs.

OK, BIND EXAMPLE -LI ANSIJXMAIN -LO EXAMPLE -LI C_LIB -LI

See Chapter 3 for more information about linking with BIND.

RUNNING STANDARD-CONFORMING C PROGRAMS
ANSI C programs are executed in the same manner as non-ANSI C programs with the
RESUME command:

OK, RESUME progname

or

OK, RESUME progname [args]

Two command line options are available to switch between the ANSI and non-ANSI
libraries, if your program has linked in either CCMAIN or ANSI_CCMAIN. The command
line options -AnsiLibs and -NoAnsiLibs cause RESUME to invoke the ANSI runtime library
and the non-ANSI runtime library, respectively.

8-6

Using ANSI C

Note
The command line options -AnsiLibs and -NoAnsiLibs must be entered in full and
capitalized exactly as shown.

If you linked your program with the ANSI_CCMAIN library and decide to access the non-
ANSI C runtime library instead, issue the following command

OK, RESUME progname -NoAnsiLibs

where progname is the name of your program. Enter the -NoAnsiLibs option exactly as
shown; case is significant, and there is no short form.

If you linked your program with CCMAIN, you can access the ANSI C runtime libraries by
giving the following command

OK, RESUME progname -AnsiLibs

where progname is the name of your program. Enter -AnsiLibs exactly as shown.

To use the -AnsiLibs and -NoAnsiLibs options,

• You must have compiled your program in -32IX mode.

• You must have linked your program with the CCMAIN or ANSI_CCMAIN library.

• You must have linked your program with C_LIB, not CCLIB.

If you use command line arguments, you can place the -AnsiLibs or -NoAnsiLibs option in
any position on the command line after the program name. For example, if your program
is

#include <stdio.h>

main(argc, argv)
int argc;
char *argv[];
{

int i;

printf("The arguments are: ");
for (i =0; i < argc; i++)

printf("ZsZc", argv[i], (i < argc-1) ? ' ' : '\n');
printf("Zd arguments\n", argc);

}

and your command line is

OK, RESUME prog how many args -AnsiLibs is this

the program will display

The arguments are: prog how many args is this
6 arguments
OK,

8-7

C User's Guide

PRIMOS C has a preprocessor macro, ANSILIBRARIES, which you can put in your
program as a flag to indicate whether you are using the ANSI libraries or not. The
following example shows how to use the ANSILIBRARIES macro:

^include <stdio.h>

main()
{

extern short ANSILIBRARIES;

if (ANSILIBRARIES)
printf("I'm in ANSI mode.\n");

else
printf("I'm not in ANSI mode.\n");

}

You can declare the ANSILIBRARIES macro in uppercase, lowercase, or both, as long as
you refer to it consistently throughout your program.

CONVERTING OLDER PRIMOS C PROGRAMS TO ANSI C
This section describes a few potential problems that await users who want to make older
PRIMOS C programs conform to the ANSI C standard. Most of these problems have to do
with the C library, the macro preprocessor, and mixing old-style and new-style function
declarations, the areas of greatest difference between PRIMOS C and the ANSI standard.

Examine carefully your program's use of library functions. Make sure

• That you include the correct header file

• That you declare correctly the variables that hold function arguments and returned
values

The list of ANSI C library functions in the next section provides a quick reference both to
the required header files and to the required types for function arguments and returned
values.

The following list of specific differences between ANSI PRIMOS C and non-ANSI PRIMOS C
is not exhaustive.

Using the Extended Character Set With ANSI
The ANSI C library recognizes the extended character set (Prime ECS). The library
functions that perform character evaluation recognize the setting of the 8th bit when the
code that invokes these functions is compiled with the -ANSI option in 32IX mode. These
library functions are isalnumC), isalphaC), iscntrlC), isdigitC), isgraphC), islowerC), isprintC),
ispunctC), isspaceC), isupperC), and isxdigitC).

The following example illustrates the difference between compiling these functions with the
-ANSI option and without the -ANSI option.

8-8

Using ANSI C

OK, SLIST TEST.C
#include <ctype.h>

d e fi n e U P P E R C A S E _ A 0 3 0 1
#define UPPERCASE_A_WITH_ACCENT 0101

main()
{

if (isupper(UPPERCASE_A))
printf("Zo is uppercase\n", UPPERCASE_A);

if (isupper(UPPERCASE_A_WITH_ACCENT))
printf("Zo is uppercase\n", UPPERCASE_A_WITH_ACCENT);

}

OK, CC TEST -32IX
[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
00 Errors and 00 Warnings detected in 12 lines and 107 include lines.
OK, BIND -LI CCMAIN -L0 TEST -LI C_LIB
[BIND Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
BIND COMPLETE
OK, R TEST
301 is uppercase
101 is uppercase

OK, CC TEST -32IX -ANSI
[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
00 Errors and 00 Warnings detected in 12 lines and 107 include lines.
OK, BIND -LI ANSI_CCMAIN -L0 TEST -LI C_LIB
[BIND Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
BIND COMPLETE
OK, R TEST
301 is uppercase

The atof () Library Function
If you compile your program without -ANSI, the atofC) function expects the math.h header
file.

If you compile your program with -ANSI, the function expects the stdlib.h header file.

Caution
If you include neither the math.h header file nor the stdlib.h header file, or if you
include the wrong header file, your program will compile and link, but it will
produce erroneous output.

The strncpy() Library Function
The non-ANSI version of strncpyC) performs a block move from string-2 to string-1 of a
specified number of characters, including null characters.

The ANSI version of strncpyC) also copies chararacters from string-2 to string-1 but does
not copy anything from string-2 that follows a null character. Therefore, if strncpyC)
encounters a null character in string-2 before n characters have been copied, it appends null
characters to string-1 until n characters have been written.

8-9

C User's Guide

The following example illustrates the difference between the non-ANSI and ANSI version of
the strncpyC) function.

OK, SLIST TEST.C
^include <stdio.h>
^include <string.h>

main()
{

int i;
char str[10];

strncpy(str, "12345\0abc", 9);
for (i = 0; i < 9; i++)

p u t c h a r (s t r [i]) ;
pu t cha r (' \ n ') ;

}

OK, CC TEST.C -32IX
[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
00 Errors and 00 Warnings detected in 14 lines and 248 include lines.
OK, BIND -LI ANSI_CCMAIN -L0 TEST -LI C_LIB
[BIND Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
BIND COMPLETE

OK, R TEST -NoAnsiLibs
12345abc

OK, R TEST -AnsiLibs
12345

The ctime(\ localtime(I and time() Library Functions
The non-ANSI versions of ctimeC), localtimeC), and timeC) each expect an argument that is
a pointer to int. The timeC) function returns an int value.

The ANSI version of these functions each expect one argument that is a pointer to time t,
which is defined in the time.h header file. The ANSI version of timeC) returns a time t
value.

The ANSI and non-ANSI versions of the ctimeC) function return the date and time in
different formats. The following program prints out the value returned from ctimeC):

^include <time.h>

main()
{

time_t sec;
t ime(&sec) ;
p r i n t f ("%s \n " , c t ime(&sec)) ;

}

If you use the ANSI library, the string looks like this:
OK, R EXAMPLE -AnsiLibs
Mon Mar 3 13:06:07 1990

8-10

Using ANSI C

If you use the non-ANSI library, it looks like this:
OK, R EXAMPLE -NoAnsiLibs
03 Mar 90 13:06:07 Monday

The #endif Preprocessor Command
Non-ANSI PRIMOS C allows you to follow an #endif command with an identifier name,
as in the following example:

#ifndef PRIME
#define PRIME 1

#endif PRIME

main()
{
}

The 1978 C language does not sanction this practice, but it does not forbid it. If you
compile such a program with -ANSI, you will receive the following error message:

OK, CC PROG -32IX -ANSI
[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
Error #1 on line 4 in file <mysys>myid>prog.c

Extraneous input seen after #endif directive.

01 Error and 00 Warnings detected in 7 source lines.

Redefining Macros
The non-ANSI C preprocessor allows you to redefine a macro in a program without first
using #undef to disable the previous macro definition. For example, the non-ANSI C
compiler accepts the following program:

#define color "green"
#define color "blue"

ma in ()
{

p r i n t f (" co lo r i s 2s \n " , co lo r) ;
}

The ANSI C preprocessor requires that you undefine a macro with the #undef command
before you redefine it with a different value. If you compile the program above with
-ANSI, you receive the following error message:

OK, CC PROG -32IX -ANSI
[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
Error #1 on line 2 in file <mysys>myid>prog.c

Redefinition of 'color' must match (ignored).

01 Error and 00 Warnings detected in 7 source lines.

8-11

C User's Guide

Macro Expansion
Formal Parameters in Quoted Strings: The non-ANSI C macro preprocessor replaces
formal parameters that occur within quoted strings. For example, in the following program,
the parameters value and format in the macro definition are replaced within the string
argument to printfC):

^include <stdio.h>
#define PR(format, value) printf ("value = ZformatU", value)
main()
{

int x;

x = 35;
PR(d , x) ;

}

The program displays the following:

x = 35

The ANSI C macro preprocessor does not automatically replace formal parameters within
quoted strings. To obtain the same result when you compile with -ANSI, precede the
parameter name with a #. The preprocessor expands the parameter as a quoted string,
which is then concatenated with any other strings in the macro definition. The following
command performs the same function as the one in the program above:

#define PR(format,value) printf(#value " = reformat"\t", value)

If you use the old-style macro definition (without the #) and compile with -ANSI, you
obtain the unintended output

value = O.OOOOOOormat

Syntax Checking in #define Commands: In non-ANSI PRIMOS C, the macro processor
performs syntax checking on the arguments to #define commands.

In ANSI PRIMOS C, the macro preprocessor checks the syntax only when the macro is
expanded in the program.

For example, non-ANSI C accepts only single character arguments in single quotation marks
in #define commands. For example, the definition

#define ctrl(letter) ('letter' & 077)

is incorrect and results in an error message. Similarly, commands like

#define HUGE 12345678901234567890
#define HEX Ox
#define OCT 0778
#define CH 't

will draw compiler error messages if -ANSI is not specified.

8-12

Using ANSI C

If -ANSI is specified, these macros will draw errors only when their expansion results in a
syntactically invalid program.

The fopen(\ f dopen(I and f reopen() Library Functions
The non-ANSI and ANSI versions of fopen(), fdopen(), and freopen() have different
expectations for the contents of the second argument, accessMode (mode in the ANSI
function descriptions).

If you link your program with the CCMAIN library, you must use the non-ANSI argument
contents. The non-ANSI argument contents are described in the discussion of fopenC) in
Chapter 4.

If you link your program with the ANSI_CCMAIN library, you must use the ANSI
argument contents that are described in the discussion of fopenC) in the ANSI C Library
Functions section of this chapter.

Table 8-2 shows how the non-ANSI arguments correspond to the ANSI arguments.

TABLE 8-2. Non-ANSI and ANSI fopen Argument Strings

Non-ANSI String ANSI String

r r

" w » » " w "

" w a " " a "

" i " " r b "

" o " " w b "

" o a " " a h "

" i + " " r + b "

" o + " " w + b "

" o a + " " a + b "

" r+"

"w+"

"a+"

If you want a program to be able to use both the ANSI and the non-ANSI libraries, you
can use the ANSILIBRARIES macro to switch from one argument string to another, as
in the following example:

8-13

C Users Guide

#include <stdio.h>

main()
{

extern short ANSILIBRARIES;
char writeBinary[3];
FILE *fp, *fopen();

if (ANSILIBRARIES)
strcpy(writeBinary, "wb");

else
strcpy(writeBinary, "o");

if ((fp = fopen("tmp.file", writeBinary)) == NULL)
printf("can't open tmp.file\n");

else {
fprintf(fp, "put stuff in tmp.file");
f c lose (fp) ;

}

Mixing Old and New Style Function Definitions and Declarations
A program should not mix function prototypes and old-style function definitions and
declarations because default argument promotion is performed on arguments if the old style
is used. This means that char and short int arguments are converted to int, and float
arguments are converted to double.

In the following example, the character argument passed to print__char is promoted to an
int due to the old-style function declaration. Since the function definition is in the new
style, however, no type promotion is expected and the parameter is treated as a char. This
leads to incorrect results.

OK, SLIST MAIN.C
extern void print_char();
main()
{

pr int_char('a');
}
OK, SLIST PRINT.C
void print_char(char ch)
{

pr intf ("character is 7.c\n", ch);
}
OK, CC (MAIN PRINT) -32IX -ANSI
[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
00 Errors and 00 Warnings detected in 6 source lines.
[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
00 Errors and 00 Warnings detected in 4 source lines.
OK, BIND -LI ANSI.CCMAIN -L0 MAIN PRINT -LI C_LIB
[BIND Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
BIND COMPLETE
OK, R MAIN
character is

8-14

Using ANSI C

Nonstandard Library Functions
The following non-ANSI C library functions are implementation-dependent system calls; they
are not part of the ANSI C standard library. However, you can reference them whether
you compile with -ANSI or without it, and whether you link the ANSI_CCMAIN or
CCMAIN library:

accessC) bioSprimosf ileunitC) cabsC) cfree()
chdirC) chrcheckC) closeC) copyC)
creatC) cuseridC) deleteC) ecvtC)
fcvtC) fdopenC) fdtmC) fexistsC)
fgetnameC) f ilenoC) f rwlockC) f sizeC)
fstatC) f timeC) ftypeC) g$amiix()
gethC) getmodC) getnameC) getwC)
gtermC) gvgetC) gvsetC) hypotC)
indexC) isasciiC) isattyC) ispasciiC)
lsdirC) lseekC) mkdirC) moveC)
openC) primospathC) puthC) putwC)
readC) rindexC) seekC) setmodC)
sleepC) statC) stermC) tellC)
timerC) toasciiC) topasciiC) writeC)

See Chapter 4 for information about these functions.

ANSI C LIBRARY FUNCTIONS
This section lists all the ANSI C library function and macro names in alphabetical order.
It shows the returned value and argument types for each function as well as the header
file in which its declaration resides. For more information, see Chapter 4 if the function
existed prior to ANSI. If it did not, consult the ANSI standard or the second edition of
The C Programming Language by Kernighan and Ritchie.

abortC) abs() acosC) asctimeC)
asinC) assertC) atanC) atan2()
atexitC) * atofC) atoiC) atolC)
bsearchC) * callocC) ceilC) clearerrC)
clockC) * cos() coshC) ctimeC)
difftimeC) * div() * exitC) expC)
fabsC) fcloseC) feofC) ferrorC)
fflushC) fgetcC) fgetposC) * fgetsC)
f loorC) fmodO * fopenC) fprintfC)
f putcC) f putsC) f readC) freeC)
f reopenC) frexpC) fscanfC) fseekC)
fsetposC) * ftellC) fwriteC) getcC)
getcharC) getenvC) * getsC) gmtimeC)
isalnumC) isalphaC) iscntrlC) isdigitC)
isgraphC) islowerC) isprintC) ispunctC)
isspaceC) isupperC) isxdigitC) labsC) *

8-15

C User's Guide

IdexpC)
logC)
mblenC) *
memcmpC) *
mktimeC) *
printfC)
qsortC) *
rewindC)
setbufC)
signalC)
sqrtC)
strchrC)
strcspnC)
strncatC)
strrchrC)
strtokC) *
systemC)
tmpfileC) *
ungetcC)
vf printf () *
wctombC) *

IdivC) * localeconvC) * localtime
loglOC) longjmpC) mallocC)
mbstowcsC) * mbtowcC) * memchrC) *
memcpyC) * memmoveC) * memsetC) *
modfO perrorC) pow()
putcC) putcharC) putsC)
raiseC) * randC) reallocC)
removeC) * renameC) * scanfC)
setjmpC) setlocaleC) * setvbufC) *
sin() sinhC) sprintfC)
srandC) sscanfC) strcatC)
strcmpC) strcollC) * strcpyC)
strerrorC) * strftimeC) * strlenC)
strncmpC) strncpyC) strpbrkC)
strspnC) strstrC) * strtodC) *
strtolC) * strtoulC) * strxf rmC) *
tan() tanhC) timeC)
tmpnamC) tolowerC) toupperC)
va arg() * va_end() * va startC) *
vprintfC) * vsprintfC) * wcstombsC) *

Asterisks (*) denote functions that are new for ANSI.

These functions are described in the following pages.

8-16

Using ANSI C

▶ abortC)

Causes abnormal program termination to occur.

#include <stdlib.h>
void abort(void);

This function cannot return to its caller.

▶ abs()

Computes and returns the absolute value of an integer.

#include <stdlib.h>
int absCint j);

▶ acosC)

Computes and returns the arc cosine of x.

#include <math.h>
double acosCdouble x);

The returned value is in the range [0, it) radians. If an argument is not in the range [-1,
+l], a domain error occurs.

▶ asctimeC)

Converts the time in the structure timeptr into a string that has the following form.

Fri Feb 09 13:15:59 1990\n\0

#include <time.h>
char *asctime(const struct tm *timeptr);

This function returns a pointer to the string.

▶ asinC)

Computes and returns the arc sine of x.

#include <math.h>
double asinCdouble x);

8-17

C User's Guide

The returned value is in the range [-tt/2, +tt/2] radians. If an argument is not in the
range [-1, +l], a domain error occurs.

▶ assertC)

Places diagnostics into programs.

#include <assert.h>
void assertCint expression);

If the argument is false when it is executed, the macro writes information about the
failure to stderr.

▶ atanC)

Computes and returns the arc tangent of x.

#include <math.h>
double atanCdouble x);

The returned value is in the range [-7T/2, +7T/2] radians.

▶ atan2()

Computes and returns the arc tangent of y/x.

#include <math.h>
double atan2(double y, double x);

The returned value is in the range [-it, +n] radians. If both arguments are zero, a domain
error occurs.

▶ atexitC)

Registers the function func, to be called with no arguments at the normal termination of
the program. A maximum of 32 functions can be registered.

#include <stdlib.h>
int atexitCvoid (*funcXvoid));

If the registration succeeds, this function returns zero. If it fails, atexitC) returns nonzero.

8-18

Using ANSI C

▶ atof()

Converts the string nptr to double representation and returns the converted value.

#include <stdlib.h>
double atofCconst char *nptr);

▶ atoi()

Converts the string nptr to int representation and returns the converted value.

#include <stdlib.h>
int atoiCconst char *nptr);

▶ atolC)

Converts the string nptr to long int representation and returns the converted value.

#include <stdlib.h>
long int atoiCconst char *nptr);

▶ bsearchC)

Searches an array base of nmemb objects for an element that matches the object pointed to
by key.

#include <stdlib.h>
void *bsearchCconst void *key, const void *base,

size_t nmemb, size t size,
int (*comparXconst void *, const void *));

size specifies the size of each array element, compar points to a comparison function that
is called with two arguments that point to the key object and an array element.

If the key object is less than, matches, or is greater than the array element, bsearchC)
returns an integer less than, equal to, or greater than zero, respectively. The array is sorted
according to the comparison function.

This function returns a pointer to a matching element of the array. If no match is found,
however, it returns a null pointer.

▶ callocC)

Allocates space for an array of nmemb objects of size size. This function initializes all bits
in the space to zero.

8-19

C User's Guide

#include <stdlib.h>
void *calloc(size t nmemb, size_t size);

callocC) returns a pointer to the allocated space or a null pointer.

▶ ceilC)

Computes and returns the smallest integer that is equal to or greater than x.

#include <math.h>
double ceilCdouble x);

▶ clearerrC)

Clears the error and end-of-file indicators for the stream stream.

#include <stdio.h>
void clearerrCFILE *stream);

▶ clockC)

Calculates and returns the processor time used.

#include <time.h>
clock_t clock(void);

The macro CLOCKS PER SEC converts the estimated processor time into time in seconds.

▶ cos()

Computes and returns the cosine of x expressed in radians.

#include <math.h>
double cosCdouble x);

▶ coshC)

Computes and returns the hyperbolic cosine of x. If the magnitude of x is too large, a
range error occurs.

#include <math.h>
double coshCdouble x);

8-20

Using ANSI C

▶ ctimeC)

Converts the calendar time pointed to by timer to the local time with the following form

<day-of-week> MMM DD HH:MM:SS YYYY\n\0.

#include <time.h>
char *ctime(const time_t *timer);

This function returns a pointer to the local time string.

▶ dif f timeC)

Computes and returns the difference in seconds between two calendar times: timel - timeO.

#include <time.h>
double difftime(time_t timel, time_t timeO);

▶ divC)

Computes the quotient and remainder of the division of numer by denom such that
quotient * denom + remainder = numer.

#include <stdlib.h>
div_t divCint numer, int denom);

This function operates on int types and returns a structure of type div t that consists of
the quotient and the remainder.

▶ exitC)

Causes normal program termination to occur.

#include <stdlib.h>
void exitCint status);

All functions registered by atexitC) are called in the reverse order of their registration.
This function flushes all open output streams, closes all open streams, and removes all files
created by tmpfileC)• Control returns to PRIMOS.

A nonzero status, however, is used as a severity code that is returned to the invoker of
the program.

8-21

C User's Guide

▶ exp()

Computes and returns base e raised to the x power.

#include <math.h>
double expCdouble x);

If the magnitude of x is too large, a range error occurs.

▶ f abs()

Computes and returns the absolute value of a floating-point x.

#include <math.h>
double fabsCdouble x);

▶ fcloseC)

Flushes the stream stream and closes the associated file.

#include <stdio.h>
int fcloseCFILE *stream);

If the stream was successfully closed, fcloseC) returns zero. If any errors were detected,
the function returns EOF.

▶ feof()

Tests the end-of-file indicator for the stream stream.

#include <stdio.h>
int feofCFILE *stream);

If the end-of-file indicator is set for stream, this function returns nonzero.

▶ f errorC)

Tests the error indicator for the stream stream.

#include <stdio.h>
int ferror(FILE *stream)

If the stream's error indicator is set, this function returns nonzero.

8-22

Using ANSI C

▶ f f lushC)

Writes any unwritten data to the file if stream points to an output stream or to an
update stream in which the most recent operation was not input.

#include <stdio.h>
int fflushCFILE *stream);

If stream is a null pointer, fflushC) performs the flushing action on all appropriate streams.
If a write error occurs, this function returns EOF; otherwise it returns zero. Refer to the
fflushC) description in Chapter 4 for PRIMOS limitations.

▶ fgetcC)

From the input stream stream, this function gets the next character as an unsigned char
converted to an int, and advances the file position indicator.

#include <stdio.h>
int fgetc(FILE *stream);

fgetcC) returns the character. If stream is at the end-of-file, its end-of-file indicator is set
and EOF is returned. If a read error occurs, stream's error indicator is set and EOF is
returned.

▶ fgetposC)

Saves the current value of the file position indicator for the stream stream in the object
pos.

#include <stdio.h>
int fgetpos(FILE *stream, fpos t *pos);

The saved value contains information that fsetposC) can use for repositioning stream to its
position at the time of the call to fgetposC). If successful, fgetposC) returns zero. If it
fails, the function returns nonzero.

▶ f getsC)

Reads at most one less than n characters from the stream stream into the array s.

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

When fgetsC) encounters a new-line character or end-of-file, it reads no additional
characters. When the last character is read into the array, the function immediately writes
a null character.

8-23

C User's Guide

If successful, fgetsO returns s. If it encounters an end-of-file, the contents of the array
remain unchanged and a null pointer is returned. If a read error occurs, the array contents
are indeterminate and a null pointer is returned.

▶ f loor()

Computes and returns the largest integer that is less than or equal to x.

#include <math.h>
double floorCdouble x);

▶ f mod()

Computes and returns the remainder of x/y. If y is zero, this function returns a zero.

#include <math.h>
double fmodCdouble x, double y);

▶ fopenC)

Opens a file whose name is the string filename, and associates a stream with it. The
argument mode points to a string that begins with one of the sequences listed in Table 8-3.

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);

Opening a file with read mode fails for a nonexistent or unreadable file. Opening a file
with append mode forces subsequent writes to the file's current end-of-file, regardless of
intervening calls to fseekC).

Opening a file with update mode, allows input and output to be performed on the
associated stream. Output followed directly by input requires an intervening call to
fflushC) or a file positioning function (fseekC), fsetposC), or rewindC)). Input followed
directly by output requires an intervening call to a file positioning function, unless the
input operation encounters end-of-file.

fopenC) returns a pointer to the stream. If the open operation failed, the function returns
a null pointer.

▶ fprintfC)

Writes output to the stream stream under control of the string format, which specifies
how the subsequent arguments are to be converted for output.

8-24

Using ANSI C

TABLE 8-3. Values for mode Argument of fopen Function

A r g u m e n t A c t i o n P e r f o r m e d

Open text file for reading.
Truncate to zero length or create text file for writing.

Append; open or create text file for writing at end-of-file.

Open binary file for reading.
Truncate to zero length or create binary file for writing.

Append; open or create binary file for writing at end-of-file.

Open text file for update (reading and writing).
Truncate to zero length or create text file for update.

Append; open or create text file for update, writing at end-of-
file.

Open binary file for update (reading and writing).
Truncate to zero length or create binary file for update.

Append; open or create binary file for update, writing at end-of-
file.

" r "

" w "

"a"

"rb"

"wb "

"ab"

"r+"

"w+"

"a+"

"r+b" or "rb+"

"w+b' ' or "wb+

"a+b" or "ab+"

#include <stdio.h>
int fprintfCFILE *stream, const char *format, ...);

This function returns the number of characters written. If an output error occurred, it
returns a negative value.

In addition to the conversion characters listed in Table 4-4 on page 4-44, the following also
exist:

TABLE 8-4. Additional Conversion Characters for Formatting Output

Character Meaning

%>i Converts to decimal format.

%x Converts to hexadecimal format using letters abcdef.

%X Converts to hexadecimal format using letters ABCDEF.

%G Converts double to %f or %E.

%n The argument should be a pointer to an integer that represents the
number of characters written to the output stream so far by this
call.

8-25

C User's Guide

In addition to the field specifiers in Table 4-5 on page 4-46, the following also exist:

TABLE 8-5. Additional Field Specification for Output Formats

Character Meaning

+ The result of a signed conversion always begins with a plus or
minus sign.

h Indicates that a following %d, %i, %o, %u, %x, or %X specification
corresponds to a short output source.

0 Uses leading zeros to pad to the field width for d, i, o, u, x, X, e,
E, f, g, and G conversions,

Converts the result to an alternate form. For o conversion, it forces
the first digit to zero. For x and X conversions, it prefixes Ox or
OX to a nonzero result. For e, E, f, g, and G conversion, the result
always contains a decimal-point, even with no following digits. For
g and G conversions, it does not remove trailing zeros from the
result.

▶ f putcC)

Writes c, converted to an unsigned char, to the stream stream at the place specified by
the associated file position indicator, and advances the indicator.

#include <stdio.h>
int fputcCint c, FILE *stream);

fputcC) returns the character written. If a write error occurs, the function sets the
stream's error indicator and returns EOF.

▶ f putsC)

Writes the string s to the stream stream, excluding the terminating null character.

#include <stdio.h>
int fputsCconst char *s, FILE *stream);

If successful, fputsC) returns a nonnegative value. If a write error occurs, it returns EOF.

▶ f readC)

Reads up to nmemb elements of size size from the stream stream into the array ptr. The
function advances the stream's file position indicator by the number of successfully read
characters.
8-26

Using ANSI C

#include <stdio.h>
size t freadCvoid *ptr, size_t size, size t nmemb, FILE *stream);

freadC) returns the number of successfully read elements. This number may be less than
nmemb if a read error or end-of-file is encountered. If size or nmemb is zero, the function
returns zero.

▶ f ree()

Deallocates the space pointed to by ptr.

#include <stdlib.h>
void freeCvoid *ptr);

If ptr is a null pointer, no action occurs.

▶ freopenC)

Opens filename and associates the stream stream with it.

#include <stdio.h>
FILE *freopen(const char *filename, const char *mode, FILE *stream);

freopenC) uses the mode argument just as in fopenC). It attempts to close any file
associated with the specified stream, and clears the stream's error and end-of-file indicators.

If successful, freopenC) returns the value of stream. If the open operation fails, the
function returns a null pointer.

▶ f rexpC)

Splits a floating-point number into a normalized fraction and an integral power of 2. The
function stores the integer in exp.

#include <math.h>
double frexpCdouble value, int *exp);

frexpC) returns a double x such that value = x * 2 raised to the power *exp.

▶ fscanfC)

Reads input from the stream stream under the control of format, which specifies allowable
input sequences and their conversion for assignment. This function uses the following
arguments as pointers to the objects that are to receive the converted input.

8-27

C User's Guide

#include <stdio.h>
int fscanfCFILE *stream, const char *format, ...);

In addition to the conversion characters listed in Table 4-6 on page 4-52, the following also
exist.

TABLE 8-6. Additional Conversion Specifications for Formatting Input

Character Meaning

%i A decimal integer is input. The corresponding argument must be
an integer pointer.

%x A hexadecimal integer is input using letters abcdef. The cor
responding argument must be an integer pointer.

%X A hexadecimal integer is input using letters ABCDEF. The cor
responding argument must be an integer pointer.

%G A floa t ing-po in t number i s inpu t .

%n No input is consumed. The argument is a pointer to an integer
that represents the number of characters read from the input
stream so far by this call. This directive does not increment the
assignment count returned at the completion of fscanfC).

fscanfC) returns the number of input items assigned, which can be fewer than provided
for, or which can be zero for an early matching failure. If an input failure occurs before
any conversion, this function returns EOF.

▶ fseekC)

Sets the file position indicator for the stream stream.

#include <stdio.h>
int fseekCFILE *stream, long int offset, int whence);

The new position for a binary stream is measured in characters from the beginning of the
file. It is obtained by adding offset to the whence position. If whence is SEEK_SET, the
position is the beginning of the file; for SEEK_CUR, it is the file position indicator's
current value; for SEEK_END, it is end-of-file.

For a text stream, offset is either zero or a value returned by an earlier call to ftellC) on
the same stream; whence is SEEK_SET.

8-28

Using ANSI C

If successful, fseekC) clears the end-of-file indicator for the stream and undoes any effects
of ungetcC) on it. For a request that cannot be satisfied, this function returns nonzero.
Refer to fseekC) in Chapter 4 for PRIMOS limitations.

▶ f setposC)

Sets stream's file position indicator according to pos, which comes from an earlier call to
fgetposC) on the same stream.

#include <stdio.h>
int fsetposCFILE *stream, const fpos_t *pos);

If successful, fsetposC) clears the stream's end-of-file indicator, undoes any effects of
ungetcC) on it, and returns zero. On failure, the function returns nonzero.

▶ f tellC)

Gets the file position indicator's current value for the stream stream.

#include <stdio.h>
long int ftellCFILE *stream);

The value for a binary stream is the number of characters from the beginning of the file.
The value for a text stream contains information that fseekC) can use.

ftelC) returns the current value of the file position indicator for the stream. On failure, it
returns -IL.

▶ f writeC)

Writes up to nmemb elements of size size, from the array ptr to the stream stream. The
function advances the stream's file position indicator by the number of successfully written
characters.

#include <stdio.h>
size t fwriteCconst void *ptr, size t size, size t nmemb,

FILE *stream);

fwriteC) returns the number of elements successfully written. If the function encounters a
write error, this number is less than nmemb.

▶ getcC)

Equivalent to fgetcC), except that getcC) is implemented as a macro.

8-29

C User's Guide

#include <stdio.h>
int getc(FILE *stream);

getcC) returns the next character from stream. If the stream is at end-of-file, the function
sets the stream's end-of-file indicator and returns EOF. If a read error occurs, getcC) sets
the stream's error indicator and returns EOF.

▶ getcharC)

Equivalent to getcC) with the argument stdin.

#include <stdio.h>
int getcharCvoid);

getcharC) returns the next character from stdin. If the stream is at end-of-file, the
function sets the stream's end-of-file indicator and returns EOF. If a read error occurs,
getcharC) sets the stream's error indicator and returns EOF.

▶ getenvC)

Searches an environment list (for PRIMOS, a global variable list) for a string that matches
name.

#include <stdlib.h>
char *getenv(const char *name);

getenvC) returns a pointer to the string that is associated with the matching list member.
If name cannot be found, the function returns a null pointer.

▶ getsC)

Reads characters from stdin into the array s, until it encounters a newline character or
end-of-file. This function discards any newline character. It immediately writes a null
character after reading the last character into the array.

#include <stdio.h>
char *getsCchar *s);

If successful, getsC) returns s. If it encounters end-of-file, the contents of the array remain
unchanged and a null pointer is returned. If a read error occurs, the array contents are
indeterminate and a null pointer is returned.

8-30

Using ANSI C

▶ gmtimeC)

Converts the calendar time pointed to by timer into a time that is expressed as Coordinated
Universal Time (UTC).

^include <time.h>
struct tm *gmtimeCconst time_t *timer);

This function returns a null pointer since UTC is not available under PRIMOS.

▶ isalnumC)

Tests for any character for which isalphaC) or isdigitC) is true.

#include <ctype.h>
int isalnumC int c);

This function is implemented as a macro.

▶ isalphaC)

Tests for any character for which isupperC) or islowerC) is true.

#include <ctype.h>
int isalphaC int c);

This function is implemented as a macro.

▶ iscntrlC)

Tests for any control character.

#include <ctype.h>
int iscntrlCint c);

This function is implemented as a macro.

▶ isdigitC)

Tests for any decimal-digit character.

#include <ctype.h>
int isdigitC int c);

This function is implemented as a macro.

8-31

C User's Guide

▶ isgraphC)

Tests for any printing character except space.

#include <ctype.h>
int isgraphCint c);

This function is implemented as a macro.

▶ islowerC)

Tests for any lowercase alphabetic ASCII character.

#include <ctype.h>
int islowerCint c);

This function is implemented as a macro.

▶ isprintC)

Tests for any printing character including a space.

#include <ctype.h>
int isprintCint c);

This function is implemented as a macro.

▶ ispunctC)

Tests for any printing character that is neither a space nor a character for which isalnumC)
is true.

#include <ctype.h>
int ispunctCint c);

This function is implemented as a macro.

▶ isspaceC)

Tests for any of the following white-space characters: space 0'), form feed 0\f), newline
0\n'), carriage return C'\r'), horizontal tab C'\t'), and vertical tab C'\v'). This function is
implemented as a macro.

#include <ctype.h>
int isspaceCint c);

8-32

Using ANSI C

▶ isupperC)

Tests for any uppercase alphabetic ASCII character.

#include <ctype.h>
int isupperCint c);

This function is implemented as a macro.

▶ isxdigitC)

Tests for any hexadecimal digit character.

#include <ctype.h>
int isxdigitCint c);

This function is implemented as a macro.

▶ labsC)

Computes and returns the absolute value of a long integer.

#include <stdlib.h>
long int labsClong int j);

▶ IconvC)

Sets the components of an object of type struct Iconv with values that are appropriate for
formatting numeric quantities according to the current locale's rules.

#include <locale.h>
struct lconv *localeconv(void);

This function returns a pointer to the object. At this release, only the "C" locale is
supported.

▶ IdexpC)

Multiplies a floating-point number by an integral power of 2.

#include <math.h>
double IdexpCdouble x, int exp);

This function returns x * 2 raised to the power exp.

8-33

C Users Guide

▶ ldiv()

Computes the quotient and remainder of the division of numer by denom such that
quotient * denom + remainder = numer.

#include <stdlib.h>
ldiv_t IdivClong int numer, long int denom);

This function operates on long int types and returns a structure of type ldiv_t that
consists of the quotient and the remainder.

▶ localtimeC)

Converts the calendar time in timer into a broken-down time.

#include <time.h>
struct tm *localtime(const time_t *timer);

This function returns a pointer to struct tm.

▶ log()

Computes and returns the natural logarithm of x.

#include <math.h>
double logCdouble x);

If x is negative, a domain error occurs. If x is zero, a range error occurs.

▶ loglOC)

Computes and returns the base-ten logarithm of x.

#include <math.h>
double log IOC double x);

If x is negative, a domain error occurs. If x is zero, a range error occurs.

▶ longjmpC)

Restores the environment that the most recent setjmpC) saved in the program invocation
that has the corresponding jmp_buf argument.

#include <setjmp.h>
void longjmpCjmp buf env, int val);

8-34

Using ANSI C

After longjmpC) completes, the program continues to execute as if setjmpC) had just
returned val.

▶ mallocC)

Allocates space for an object of size size.

#include <stdlib.h>
void *malloc(size_t size);

This function returns a pointer to the allocated space or a null pointer.

▶ mblenC)

Determines the number of bytes in the multibyte character pointed to by s, when s is not
a null pointer.

#include <stdlib.h>
int mblenCconst char *s, size_t n);

If 5 is not a null pointer, this function returns the following: the number of bytes if the
next n or fewer bytes form a valid multibyte character; 0 if s points to the null
character; or -1.

If 5 is a null pointer, this function returns a nonzero value if the multibyte character
encodings are state-dependent. It returns zero if the encodings are not state-dependent.

Note
At this release, mblenC) returns 0 if 5 is a null pointer, if s points to the null
character, or if n is zero. Otherwise, this function returns 1.

▶ mbstowcsC)

Converts a sequence of multibyte characters beginning in the initial shift state from the
array s to a sequence of corresponding codes. A maximum of n codes are stored into the
array pwcs. mbstowcsC) does not examine or convert multibyte characters that follow a
null character.

#include <stdlib.h>
size t mbstowcsCwchar t *pwcs, const char *s, size t n);

This function returns the number of modified array elements, which does not include any
terminating zero code.

8-35

C User's Guide

▶ mbtowcC)

Determines the number of bytes in the multibyte character pointed to by s, when s is not
a null pointer. mbtowcC) next determines the code for the type wchar t value
corresponding to the multibyte character. If the multibyte character is valid and pwc is
not a null pointer, the code is stored in pwc. A maximum of n bytes of the array s are
examined.

#include <stdlib.h>
int mbtowc(wchar_t *pwc, const char *s, size_t n);

If s is not a null pointer, this function returns the following: the number of bytes in the
converted multibyte character if the next n or fewer bytes form a valid multibyte
character; 0 if s points to the null character; or -1.

If j is a null pointer, this function returns a nonzero value if multibyte character
encodings are state-dependent. It returns zero if the encodings are not state-dependent.

Note
At this release, mbtowcC) returns 0 if s is a null pointer, if s points to the null
character, or if n is zero. Otherwise, this function returns 1.

▶ memchrC)

Finds the first occurrence of c, converted to an unsigned char, in the first n characters of
the object s.

#include <string.h>
void *memchrCconst void *s, int c, size_t n);

This function returns a pointer to the character found. If it does not find the character in
the object, it returns a null pointer.

▶ memcmpC)

Compares the first n characters of the object si to the first n characters of the object s2.

#include <string.h>
int memcmpC const void *sl, const void *s2, size__t n);

Depending on whether si is greater than, equal to, or less than s2, this function returns an
integer that is greater than, equal to, or less than zero, respectively.

▶ memcpyC)

Copies n characters from the object s2 into the object si and returns a pointer to si.

8-36

Using ANSI C

#include <string.h>
void *memcpy(void *sl, const void *s2, size t n);

▶ memmoveC)

Copies n characters from the object s2 into the object si.

#include <string.h>
void *memmove(void *sl, const void *s2, size_t n);

The n characters from s2 are first copied into a temporary array of n characters that does
not overlap the objects pointed to by si and s2. The n characters from the temporary
array are then copied into si. This function returns the value of si.

▶ memsetC)

Copies the value of c, converted to an unsigned char, into each of the first n characters of
the object s, and returns the value of s.

#include <string.h>
void *memsetCvoid *s, int c, size_t n);

▶ mktimeC)

Converts the broken-down time, expressed in local time, in timeptr to a calendar time value
that has the same encoding as the values returned by timeC), and returns that value.

#include <time.h>
time_t mktimeCstruct tm *timeptr);

▶ modfC)

Splits value into integral and fractional parts whose signs are the same as value's sign.

#include <math.h>
double modfCdouble value, double *iptr);

This function stores the integral part as a double in iptr, and returns the fractional part.

▶ perrorC)

Maps errno to an error message and writes a sequence of characters to stderr.

8-37

C User's Guide

#include <stdio.h>
void perrorC const char *s);

▶ pow()

Computes and returns x raised to the power y.

#include <math.h>
double powCdouble x, double y);

If x is negative and y is not an integral value, a domain error occurs.

▶ printfC)

Equivalent to fprintfC) with stdout for the stream.

#include <stdio.h>
int printfCconst char *format, ...);

This function returns the number of characters written. If an output error occurred, it
returns a negative value.

▶ putcC)

Equivalent to fputcC), except that putcC) is implemented as a macro.

#include <stdio.h>
int putcCint c, FILE *stream);

This function returns the character written. If a write error occurs, it sets the error
indicator for the stream and returns EOF.

▶ putcharC)

Equivalent to putcC) with stdout for the stream.

#include <stdio.h>
int putcharCint c);

This function returns the character written. If a write error occurs, it sets the error
indicator for the stream and returns EOF.

8-38

Using ANSI C

▶ putsC)

Writes the string s to stdout and appends a newline character to the output.

#include <stdio.h>
int putsCconst char *s);

If successful, this function returns a nonnegative value. If a write error occurs, it returns
EOF.

▶ qsortC)

Sorts an array base of nmemb objects, size specifies the size of each object. qsortC) sorts
the array contents into ascending order according to a comparison function compar that is
called with two arguments pointing to the objects being compared.

#include <stdlib.h>
void qsortCvoid *base, size__t nmemb, size_t size,

int C*comparXconst void *, const void *));

If the first argument is less than, equal to, or greater than the second, this function returns
an integer that is less than, equal to, or greater than zero, respectively.

▶ raiseC)

Sends the signal sig to the executing program.

#include <signal.h>
int raiseCint sig);

If successful, this function returns zero. If it is unsuccessful, it returns nonzero.

▶ randC)

Computes and returns a pseudo-random integer in the range 0 to RAND_MAX.

#include <stdlib.h>
int randCvoid);

▶ reallocC)

Changes the size of the object pointed to by ptr to the size specified by size.

#include <stdlib.h>
void *realloc(void *ptr, size t size);

8-39

C User's Guide

The contents of the object are unchanged up to the lesser of the new and old sizes. If the
new size is larger, the value of the newly allocated portion of the object is indeterminate.

▶ removeC)

Causes the file whose name is the string filename to be no longer accessible.

#include <stdio.h>
int removeCconst char *filename);

The next attempt to open that file using the name in filename fails, unless the file is to
be created. This function returns zero if it is successful, and nonzero if it fails.

▶ renameC)

Causes the file whose name is the string old to be known by the name given by the
string new.

#include <stdio.h>
int renameCconst char *old, const char *new);

The file named old is no longer accessible. If new exists prior to the call, it will be
overwritten. If successful, this function returns zero. If it fails, it returns nonzero; in this
case if the file existed previously, it is still known by its original name.

▶ rewindC)

Sets the file position indicator for the stream stream to the beginning of the file.

#include <stdio.h>
void rewindCFILE *stream);

▶ scanfC)

Equivalent to fscanfC) with stdin for the stream.

#include <stdio.h>
int scanfCconst char *format, ...);

This function returns the number of assigned input items. If there is an early matching
failure, this number can be fewer than provided for, or even zero. If an input failure
occurs before any conversion, scanfC) returns EOF.

8-40

Using ANSI C

▶ setbuf()

This function may be used only after stream is associated with an open file, and before
any operation is performed on the stream.

#include <stdio.h>
void set buf (FILE *stream, char *buf);

If buf is not a null pointer, this function may use the array it points to in place of an
automatically allocated buffer. Input and output are fully buffered, and the array has a
size of BUFSIZE.

If buf is a null pointer, input and output are unbuffered, which is permitted on binary
files only.

▶ setjmpC)

Retains the calling environment in the jmp_buf argument for later use by longjmpC).

#include <setjmp.h>
int setjmp(jmp_buf env);

If the return is from a direct invocation, this function returns zero. If the return is from
a call to longjmpC), it returns nonzero.

▶ setlocaleC)

Selects the portion of the program's locale that is specified by category and locale.

#include <locale.h>
char *setlocaleCint category, const char *locale);

This function queries or changes all or portions of the program's current locale. The
LC_ALL category names the program's entire locale. The "C" locale specifies the minimal
environment for C translation. The "" locale specifies the implementation-defined native
environment.

If locale is not a null pointer and the selection can be honored, this function returns a
pointer to the string associated with category for the new locale. If the selection cannot be
honored, a null pointer is returned and the locale is not changed.

If locale is a null pointer, this function returns a pointer to the string associated with
category for the current locale. The locale is not changed. At this release, only the "C"
locale is supported.

8-41

C User's Guide

▶ setvbufC)

This function may be used only after the stream stream is associated with an open file,
and before any operation is performed on the stream.

#include <stdio.h>
int setvbuf(FILE *stream, char *buf, int mode, size_t size);

The argument mode determines how stream will be buffered. _IOFBF causes fully
buffered input and output. __IOLBF causes line buffered input and output. _IONBF
causes unbuffered input and output.

If buf is not a null pointer, setvbuf() may use the array it points to in place of an
automatically allocated buffer, size specifies the array size.

If successful, this function returns zero. If an invalid value is given for mode or if the
request cannot be honored, it returns nonzero.

▶ signalC)

Specifies how the receipt of sig is to be handled.

#include <signal.h>
void (*signal(int sig, void (*funcXint))Xint);

If func is SIG_DFL, default handling occurs for the signal. If func is SIG_IGN, the signal
is ignored. Otherwise, func points to a function to be called when the signal occurs.

If the request can be honored, this function returns the value of func for the most recent
call to signalC) for the specified sig. Otherwise, it returns SIG_ERR.

▶ sin()

Computes and returns the sine of x expressed in radians.

#include <math.h>
double sinCdouble x);

▶ sinhC)

Computes and returns the hyperbolic sine of x.

#include <math.h>
double sinhCdouble double x);

If the magnitude of x is too large, a range error occurs.

8-42

Using ANSI C

▶ sprintf()

Equivalent to fprintfC), except that s specifies an array into which the generated output is
to be written, rather than a stream.

#include <stdio.h>
int sprintfCchar *s, const char *format, ...);

This function returns the number of characters written in s, excluding the terminating null
character.

▶ sqrtC)

Computes and returns the square root of x.

#include <math.h>
double sqrtCdouble x);

If jt is negative, a domain error occurs.

▶ srandC)

Uses seed as a seed for a new sequence of pseudo-random numbers that are to be returned
by later calls to randC).

#include <stdlib.h>
void srandCunsigned int seed);

If srandC) is then called with the same seed value, the sequence of pseudo-random numbers
is repeated. If randC) is called before any calls to srandC), the same sequence is generated
as when srandC) is first called with a seed value of 1.

▶ sscanf C)

Equivalent to fscanfC), except that s specifies a string, rather than a stream, from which
the input is to be obtained.

#include <stdio.h>
int sscanf (const char *s, const char *format, ...);

This function returns the number of assigned input items. If there is an early matching
failure, this number can be fewer than provided for, or even zero. If an input failure
occurs before any conversion, sscanfC) returns EOF.

8-43

C User's Guide

▶ strcatC)

Appends a copy of the string s2, including the null character, to the end of the string sl.

#include <string.h>
char *strcat(char *sl, const char *s2);

The first character of s2 overwrites the null character at the end of sl. This function
returns the value of sl.

▶ strchr()

Finds the first occurrence of c, converted to char, in the string s.

#include <string.h>
char *strchr(const char *s, int c);

This function returns a pointer to the character found. If the character is not in s, it
returns a null pointer.

▶ strcmp()

Compares the string sl to the string s2.

#include <string.h>
int strcmp(cont char *sl, const char *s2);

If sl is greater than, equal to, or less than s2, this function returns an integer that is
greater than, equal to, or less than zero, respectively.

▶ strcolK)

Compares the string sl to the string s2, both of which are interpreted as appropriate to the
LC__COLLATE category of the current locale.

#include <string.h>
int strcoll(const char *sl, const char *s2);

If sl is greater than, equal to, or less than s2, this function returns an integer that is
greater than, equal to, or less than zero, respectively.

▶ strcpjK)

Copies the string s2, including the null character, into the array sl.

8-44

Using ANSI C

#include <string.h>
char *strcpy(char *sl, const char *s2);

This function returns the value of sl.

▶ strcspn()

Computes the length of the first segment of string sl that has no characters that are also
in string s2.

#include <string.h>
size_t strcspn(const char *sl, const char *s2);

This function returns the length of the segment.

▶ strerroK)

Maps errnum to an error message string and returns a pointer to the string.

#include <string.h>
char *strerror(int errnum);

This function maps a PRIMOS error code or a code from <errno.h> to the appropriate error
message.

▶ strf time()

Puts characters into the array s as controlled by the string format.

#include <time.h>
size_t strftime(char *s, size_t maxsize, const char *format,

const struct tm *timeptr);

The string format has zero or more conversion specifiers and ordinary multibyte characters.
A maximum of maxsize characters are placed into the array. The appropriate characters for
replacement of each conversion specifier are determined by the LC_TIME category of the
current locale and by the values contained in the structure pointed to by timeptr. Table
8-7 lists the conversion specifiers for this function.

If the total number of characters, including the null character, is not more than maxsize,
this function returns the number of characters placed in s, not including the null character.
Otherwise, it returns zero.

8-45

C User's Guide

TABLE 8-7. Conversion Specifiers for strftime Function

S p e c i fi e r A c t i o n P e r f o r m e d

%a Replaced by locale's abbreviated weekday name.

%A Replaced by locale's full weekday name.

%b Replaced by locale's abbreviated month name.

%B Replaced by locale's full month name.

%c Replaced by locale's date and time representation.

%d Replaced by the day of the month as a decimal number (01 to
31).

%H Replaced by the hour (24-hour clock) as a decimal number (00
to 23).

%I Replaced by the hour (12-hour clock) as a decimal number (01
to 12).

%j Replaced by the day of the year as a decimal number (001 to
366).

%m Replaced by the month as a decimal number (01 to 12).

%M Replaced by the minute as decimal number (00 to 59).

%P Replaced by locale's equivalent of the AM/PM designations as
sociated with a 12-hour clock.

%S Replaced by the second as a decimal number (00 to 61).

%U Replaced by the week number of the year (Sunday as the first
day of week l) as a decimal number (00 to 53).

%w Replaced by the weekday as a decimal number (0 to 6 where
Sunday is 0).

%W Replaced by the week number of the year (Monday as the first
day of week l) as a decimal number (00 to 53).

%x Replaced by locale's date representation.

%X Replaced by locale's time representation.

%y Replaced by the year without century as a decimal number (00
to 99).

%Y Replaced by the year with century as a decimal number.

%Z Replaced by the time zone name or abbreviation.

% % R e p l a c e d b y % .

8-46

Using ANSI C

▶ strlen()

Computes the length of the string s and returns the number of characters that precede the
null character.

#include <string.h>
size_t strlenCconst char *s);

▶ strncatC)

Appends n characters from the array s2 to the end of the string sl. This function does
not append a null character from s2 and the characters that follow it.

#include <string.h>
char *strncatCchar *sl, const char *s2, size_t n);

The first character of s2 overwrites the null character at the end of sl. A null character
is appended to the result. This function returns the value of sl.

▶ strncmpC)

Compares n characters from the array 57 to the array s2. This function does not compare
the characters from s2 that follow a null character.

#include <string.h>
int strncmpC const char *sl, const char *s2, size_t n);

If sl is greater than, equal to, or less than s2, this function returns an integer that is
greater than, equal to, or less than zero, respectively.

▶ strncpyC)

Copies n characters from the array s2 to the array sl. This function does not copy
characters from s2 that follow a null character.

#include <string.h>
char *strncpy<char *sl, const char *s2, size__t n);

If s2 is shorter than n characters, null characters are appended to the copy in sl until n
characters have been written. This function returns the value of sl.

▶ strpbrkC)

Finds the first occurrence in the string 57 of any character from the string s2.

8-47

C User's Guide

#include <string.h>
char *strpbrk(cont char *sl, const char *s2);

This function returns a pointer to the character found. If no character from s2 is in 57, a
null pointer is returned.

▶ strrchrC)

Finds the last occurrence of c, converted to char, in the string s.

#include <string.h>
char *strrchr(const char *s, int c);

This function returns a pointer to the character found. If c is not in s, a null pointer is
returned.

▶ strspnC)

Computes the length of the first segment of string 57 that consists solely of characters
from string s2.

#include <string.h>
size t strspnCconst char *sl, const char *s2);

This function returns the length of the segment.

▶ strstrC)

Finds the first occurrence in string 5 7 of the sequence of characters in string s2, excluding
the null character.

#include <string.h>
char *strstr(const char *sl, const char *s2);

This function returns a pointer to the located string. If the string is not found, a null
pointer is returned. If s2 has a length of zero, 57 is returned.

▶ strtodC)

Converts the first part of nptr to double representation.

#include <stdlib.h>
double strtodCconst char *nptr, char **endptr);

8-48

Using ANSI C

The expected form of the sequence has the following order: an optional plus or minus
sign; a nonempty sequence of digits with an optional decimal point character; an optional
exponent. Any unconverted part of nptr is pointed to by endptr.

This function returns the converted value. If it cannot perform a conversion, zero is
returned. If the correct value is outside the range of representable values, strtodC) returns
plus or minus HUGE_VAL, according to the sign of the value. If the correct value would
cause underflow, zero is returned.

▶ strtokC)

A sequence of calls to this function breaks string 5 7 into a sequence of tokens. A
character from string 52 delimits each of these tokens.

#include <string.h>
char *strtok(char *sl, const char *s2);

57 is the first argument of the first call in the sequence. Following calls have a null
pointer as their first argument. s2 is a separator string, and it may be different from call
to call.

The first call searches 57 for the first character not in the current s2 separator string. If
the search is successful, the character found is the start of the first token. If no such
character is found, the function returns a null pointer.

strtokC) searches from there for a character that is in the current separator string. If the
search is successful, the character found is overwritten by a null character that terminates
the current token; the function saves a pointer to the following character, from which the
next search for a token will start. If no such character is found, the current token
extends to the end of 57; subsequent searches for a token return a null pointer. Each
subsequent call has a null pointer for the first argument and starts searching from the
saved pointer.

▶ strtolC)

Converts the first part of nptr to long int representation.

#include <stdlib.h>
long int strtolCconst char *nptr, char **endptr, int base);

If base is zero, the expected order of the sequence is as follows: an optional plus or minus
sign; an integer constant.

If base is between 2 and 36, the expected order of the sequence is as follows: an optional
plus or minus sign; a series of letters and digits that represent an integer whose radix is

8-49

C User's Guide

specified by base. The letters from a (or A) through z (or Z) are used for the values 10 to
35. Only letters whose values are less than that of base are permitted.

If base is 16, the expected order of the sequence is as follows: an optional plus or minus
sign; an optional Ox or OX; the sequence of letters and digits.

endptr points to any unconverted part of nptr. This function returns the converted value.
If the correct value is outside the range of representable values, LONG_MAX or
LONG_MIN is returned, according to the sign of the value.

▶ stroulC)

Converts the first part of nptr to unsigned long int representation.

#include <stdlib.h>
unsigned long stroul(const char *nptr, char **endptr, int base);

If base is zero, the expected order is as follows: an optional plus or minus sign; and an
integer constant.

If base is between 2 and 36, the expected order is as follows: an optional plus or minus
sign; and a series of letters and digits that represent an integer with a £>a5e-specified radix.
The letters from a (or A) through z (or Z) are used for values 10 to 35. Only the letters
whose values are less than base are permitted.

If base is 16, the expected order is as follows: an optional plus or minus sign; an optional
Ox or OX; and a series of letters and digits that represent an integer.

endptr points to any unconverted portion of nptr. This function returns the converted
value. If the correct value is outside the range of values that can be represented,
ULONG_MAX is returned.

▶ strxf rm()

Transforms the string 52 and puts the string result into the array 57. A maximum of n
characters are put into 57, including the null character. If n is zero, 5 7 is a null pointer.

#include <string.h>
size t strxfrm(char *sl, const char *s2, size_t n);

The transformation is such that applying strcmp() to two transformed strings returns a
value greater than, equal to, or less than zero. This corresponds to the result of applying
strcolK) to the same two original strings.

This function returns the length of the transformed string, not including the null character.

8-50

Using ANSI C

▶ systemC)

Passes string to the host environment, where a command processor executes it.

#include <stdlib.h>
int systemC const char *string);

string may be a null pointer to ask if a command processor exists: in this case if it does
exist, nonzero is returned.

If string is not a null pointer and the command executed successfully, this function returns
zero. If it failed, nonzero is returned.

▶ tanC)

Computes and returns the tangent of x expressed in radians.

#include <math.h>
double tanCdouble x);

▶ tanhC)

Computes and returns the hyperbolic tangent of x.

#include <math.h>
double tanhCdouble x);

▶ timeC)

Returns the present calendar time in an encoded form.

#include <time.h>
time t timeCtime t *timer);

▶ tmpf ileC)

Creates a temporary binary file that is opened for update with "wb+" mode. This
temporary file is automatically removed either when it is closed or when the program
terminates normally.

#include <stdio.h>
FILE *tmpfileCvoid);

8-51

C User's Guide

If the program terminates abnormally, the temporary file is not removed. If the file is
created, this function returns a pointer to the stream of the file. If the file could not be
created, a null pointer is returned.

▶ tmpnamC)

Creates a string that is a valid filename and not the same as an existing filename. This
function creates a new string each time it is called for a maximum of TMP_MAX times.

#include <stdio.h>
char *tmpnam(char *s);

If 5 is a null pointer, tmpnamC) leaves the result in an internal static object and returns a
pointer to that object.

If 5 is not a null pointer, it points to an array of at least L_tmpnam characters where
tmpnamC) writes the result; s is returned.

▶ tolowerC)

Converts an uppercase letter to its corresponding lowercase form.

#include <ctype.h>
int tolowerUnt c);

This function returns the corresponding character.

▶ toupperC)

Converts a lowercase letter to its corresponding uppercase form.

#include <ctype.h>
int toupperCint c);

This function returns the corresponding character.

▶ ungetcC)

Pushes c back onto stream. If successful, this function returns the character pushed back.
If it fails, it returns EOF.

#include <stdio.h>
int ungetcCint c, FILE *stream);

8-52

Using ANSI C

▶ va_arg()

This is a macro for functions that may be called with a variable number of arguments of
varying types.

#include <stdarg.h>
type va_argCva_list ap, type);

The macro expands to an expression whose value and type are the same as the next
argument in the call. The parameter ap is the same as the va_Ust ap that va_start()
initializes. Each va_arg() invocation modifies ap to return the values of successive
arguments.

The parameter type is a type name such that the type of a pointer to the specified-type
object can be gotten by appending an asterisk C*) to type. va argC)'s first invocation
returns the value of the argument after that specified by parmN. Successive invocations
return in succession the remaining argument values.

▶ va endC)

This macro facilitates a normal return from the function with a variable argument list
referred to by va startC).

#include <stdarg.h>
void va_end(va_list ap);

va_end() modifies ap, which makes it unusable without invoking va_startC) again.

▶ va startC)

This is a macro for functions that may be called with a variable number of arguments of
varying types.

#include <stdarg.h>
void va_startCva_list ap, parmN);

va_startC) initializes ap for later use by va_arg() and va_endC). This macro must be
invoked before any access to the unnamed arguments. parmN is the rightmost parameter
in the variable parameter list of the function definition.

▶ vfprintfC)

Equivalent to fprintfC) except that the variable argument list is replaced by arg, which
va_startC) must initialize.

8-53

C User's Guide

#include <stdarg.h>
#include <stdio.h>
int vfprintfCFILE *stream, const char *format, va_list arg);

This function returns the number of written characters. If an output error occurred, a
negative value is returned.

▶ vprintfC)

Equivalent to printfC), except that the variable argument is replaced by arg, which
va_start() must initialize.

#include <stdarg.h>
#include <stdio.h>
int vprintfCconst char *format, va_list arg);

This function returns the number of written characters. If an output error occurred, a
negative value is returned.

▶ vsprintfC)

Equivalent to sprintfC), except that the variable argument list is replaced by arg, which
va startC) must initialize.

#include <stdarg.h>
#include <stdio.h>
int vsprintfCchar *s, const char *format, va list arg);

This function returns the number of characters written in the array, excluding the
terminating null character.

▶ wcstombsC)

Converts a series of codes that correspond to multibyte characters from the array pwcs.

#include <stdlib.h>
size t wcstombsC char *s, const wchar t *pwcs, size t n);

The conversion is into a sequence of multibyte characters that begins in the initial shift
state. These multibyte characters are put into the array s. The conversion stops if a null
character is stored or if a multibyte character would exceed the limit of n total bytes.
This function returns the number of modified bytes, excluding the null character.

8-54

Using ANSI C

▶ wctombC)

Finds out how many bytes are needed to represent the multibyte character that corresponds
to the code wchar.

#include <stdlib.h>
int wctombCchar *s, wchar_t wchar);

If 5 is not a null pointer, the multibyte character representation is stored in the array s.
A maximum of MB_CUR MAX characters are stored. This function returns the number
of bytes in the multibyte character that corresponds to wchar. If wchar's value does not
correspond to a valid multibyte character, -1 is returned.

If 5 is a null pointer, this function returns the following: a nonzero value if the
multibyte character encodings are not state-dependent; zero if they are state-dependent.

Note
At this release if 5 is a null pointer, this function returns zero; otherwise it returns
1.

8-55

APPENDICES

EXTENSIONS TO THE C LANGUAGE

This appendix describes the extensions Prime has made to the C language as described by
Kernighan and Ritchie in the first (1978) edition of The C Programming Language.

Most of these extensions are similar to those of other vendors, and most are now part of
the ANSI X3J11 C standard.

The Prime extensions to the 1978 C language are

• The enumeration data type (enum)

• The void data type

• The long double data type and quadruple precision floating point numbers (32IX
mode only)

• The fortran storage class

• The unary plus (+) operator (32IX mode only)

• Identifier names up to 32 characters in length

• New and enhanced preprocessor commands

• Automatic string concatenation

ENUMERATION DATA TYPE
The enumeration data type is an extension to the 1978 C language, but is included in the
ANSI C standard.

The enumeration data type is analogous to the scalar data type found in Pascal. New
enumeration data types in C can be defined by writing a type specifier followed by an
ordered list of identifiers. These identifiers are declared as constants. Enumeration
constants must all be unique. The declaration format for type enum is as follows:

A-1

C User's Guide

enum [tagName] {enumConstl[=value], enumConst2[=value], ...} [idenl, iden2, ...]:

The values of enumeration may be explicitly set by using the =value clause. If this clause
is not specified, the compiler chooses a value that is one higher than the previous
enumeration constant. The value for the first enumeration constant in each enumeration
list is 1 unless otherwise specified.

Also, objects of a given enumeration data type are regarded as having a type distinct from
objects of all other data types. All enumeration variables are treated as if they were of
type int.

The following examples show how to use the enum data type:
enum color {red, green, blue, yellow);
main()
{

enum color a.b.c;
a = red;
b = yellow;
c = red;
if (a == c && b == yellow)

pr in t f ("Pass . \n ") ;
e l s e

p r i n t f (" F a i 1 . \ n ") ;
}

typedef enum {Read = 01, Write = 02, Update = 04,
Scribble = 010,
PrettyMuchAnythingAtAll = 020,
TotalPower = 040} Rights;

Rights myAccessRights, yourAccessRights;

VOID DATA TYPE
The void data type is an extension to the 1978 C language, but is included in the ANSI C
standard.

Use the void data type to ensure that a value is never used. You cannot use a void
value in any way, nor can you convert it to another data type. A void expression may
be used only as an expression statement or as the left operand of a comma expression.

You can use the void keyword in a declaration statement, a function definition, or a cast
statement.

The following example shows the use of the void data type in a declaration statement.

A-2

Extensions to the C Language

main()
{

fortran void sleep$();

sleep$((long)1000);
}

If you attempt to use a void value in any way, the C compiler displays the following
error message:

This expression attempted to use the value of a sub-expression that
had the data type of "void"; this is illegal.

THE LONG DOUBLE DATA TYPE
The long double data type is an extension to the 1978 C language, but is included in the
ANSI C standard.

In 32IX mode, PRIMOS C supports quadruple precision floating point constants and variables,
which programs can declare as type long double. The -ANSI compiler option supports the
long double data type. Without the -ANSI option, to enable support for quadruple precision
constants, use the -QUADCONSTANTS compiler option. Similarly, to enable support for
quadruple precision variables without using -ANSI, use the -QUADFLOATING compiler
option. For more information, see Chapter 2.

FORTRAN STORAGE CLASS
The fortran keyword is an extension to the 1978 C language, but is permitted by the
ANSI C standard unless you compile your program with the -ANSI and
-STRICTCOMPLIANCE compiler options.

When you call procedures, the fortran storage class forces certain arguments to be passed
by reference. See Chapter 5, Interfacing to Other Languages, for more information.

A-3

C User's Guide

UNARY PLUS OPERATOR
The unary plus operator is an extension to the 1978 C language, but is part of the ANSI C
standard.

In 32IX mode, programs can use the unary plus (+) operator in front of a numeric
expression to indicate explicitly that the value of the expression is positive.

IDENTIFIER NAMES
All internal identifier names may contain a maximum of 32 characters. If the
-NOCOMPATIBILITY option is used, however, the C compiler truncates identifier names to
eight characters.

The dollar sign ($) can be used as a character in an identifier name, thus allowing
compatibility with PRIMOS routine names and arguments.

Allowing identifier names up to 32 characters in length is an extension to the 1978 C
language, but is part of the ANSI C standard. Use of the dollar sign in identifiers is an
extension to both the 1978 C language and the ANSI C standard.

PREPROCESSOR COMMANDS

Extensions to the 1978 C Language
The following are extensions to the 1978 C language but are part of the ANSI C standard.
They are available only in 32IX mode.

#elif command
defined operator
Use of preprocessor tokens in #include commands

#elif Command: Any number of #elif (else if) commands can occur after an #if, #ifdef,
or #ifndef command and before an #else command. The syntax for this command is

#elif <constant expression>

For example:
#define Version 2
#if Version == 0

#define Rev "1.0"
#elif Version == 1

#define Rev "1.1"
#elif Version == 2

A-4

Extensions to the C Language

#define Rev "1.2"
#else

#define Rev "1.unknown"
#endif

defined Operator: The defined operator can take either of two forms:

defined identifier

defined (identifier)

The expression

#if defined (ident)

has the same meaning as

#ifdef ident

For example:
#define Fun(a) (a = a)
#if defined(Fun) && !defined(fun)

in t th isWi1IBeInc luded;
e n d i f
#if defined JustForFun

int th isWi1INotBeInc luded;
#elif defined Fun

int butThi sWi1IBe;
e n d i f

Use of Tokens With ^include Commands: The #include preprocessor command in 32IX
mode allows the use of preprocessor tokens. For example, the following are legal:

^define PathName "foo>bar>si 1 ly"
^include PathName

#define MasterTree "SourceMaster>ins"
d e fi n e A n l n c l u d e F i l e " fi l e i "
^include MasterTree ">" AnlncludeFile
#include MasterTree ">fi1e2"

Extensions to the 1978 C Language and the ANSI C Standard
Two PRIMOS C preprocessor commands are extensions to both the 1978 C language and the
ANSI C standard:

#list
#nolist

The #list and #nolist commands start and stop output to a specified listing file. These
commands are available in both 64V and 32IX modes.

A-5

C User's Guide

Extensions to the 1978 Language That Are Not Available in ANSI C
The following PRIMOS C preprocessor commands are available only if you compile without
the -ANSI option:

#assert (available only in 32IX mode)
#display (available only in 32IX mode)
#endincl (available in 64V and 32IX modes)

*assert Command: This preprocessor command takes a constant expression argument and is
used for compile-time diagnostics. If the constant expression evaluates to true, no action is
taken. If the constant expression evaluates to false, compilation is aborted, and an
Assertion failed message appears indicating the source file name and the line number.
The #assert command has the following format:

#assert constExpr

For example, if array is a previously declared variable, the statements

#define SEGMENTSIZE (2048 * 64)
#assert sizeof(array) <= SEGMENTSIZE

abort compilation and print a message if the array is larger than a segment.
OK, cc prog -32ix
[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
Assertion failed: file "<mysys>me>prog.c", line 4.

01 Error and 00 Warnings detected in 4 source lines.

#assert failed! (CC)
ER!

^display Command: This preprocessor command takes a string argument, which it displays
on the user's terminal during compilation. In this way, the user can observe compile-time
progress through the program. The #display command has this format:

#display stringConst

For example:

#display "I have reached this point"

#endincl Command: This preprocessor command can be placed in an #include file. It
logically terminates the #include file prior to its physical end.

A -6

Extensions to the C Language

AUTOMATIC STRING CONCATENATION
Automatic string concatenation is an extension to the 1978 C language, but is included in
the ANSI C standard. PRIMOS C automatically concatenates two string literals. That is,
the string

"Hello ""there.\n"

is functionally equivalent to the string

"Hello there.\n"

A-7

DEBUGGING C PROGRAMS

This appendix contains information about the Prime Source Level Debugger (DBG). The
first section provides a general description of DBG. The next section describes how to use
DBG. The last section explains how DBG interacts with certain constructs that are specific
to the C language.

DBG enables you to debug C programs using nearly all the same high-level language
constructs as are available in the C programming language. To use DBG, you need not be
an experienced programmer or know anything about assembly language or machine
architecture. All you need is the ability to write programs.

DBG contains powerful features designed to make the debugging task as efficient as possible.
Program execution can be controlled at all levels by either single-statement stepping,
procedure-by-procedure stepping, or setting breakpoints at statements, procedure entries, and
procedure exits. Data can be manipulated at any time using all legal expressions and
operations available in the C programming language. DBG streamlines the effort by
providing command editing and resubmission, conditional breakpointing, and a macro facility
that closely resembles the PRIMOS abbreviation facility. Many more features, especially for
the most sophisticated programmers, exist; for information, see the Source Level Debugger
User's Guide.

DBG is multilingual. In addition to C, it supports all of the 50 Series high-level
programming languages (FTN, F77, Pascal, PL/I, CBL, and VRPG). Therefore, when C
programs are mixed with any other language, all debugging can be done under DBG using
all of the same features. DBG automatically switches contexts from one programming
language to the other, supporting the syntax and constructs belonging to the language in
which a given procedure is written.

B-1

C User's Guide

USING DBG
If you are unfamiliar with DBG operation, see the Source Level Debugger User's Guide.

The -DEBUG Option
Before using the debugger, you must compile your program using the -DEBUG option to the
CC command. (See Chapter 2 for more information about compiling programs.) The
-DEBUG option instructs the C compiler to generate specially embedded information required
by DBG in order to debug that program.

Link your program as usual. (See Chapter 3 for information about linking C programs.)

Running Under the Debugger
DBG is used interactively. It is invoked from PRIMOS command level with the DBG
command. The format of the DBG command is

DBG program-name [option-1 option-2 . . .]

where program-name indicates the name of the executable file to debug, and option-1
option-2 . . . indicates DBG command line options. (You do not need to know these
options if you are a novice.)

After you enter the command line, the DBG identification banner is displayed and you are
prompted for DBG commands with the DBG prompt, >. For example,

OK, DBG MYPROGRAM.RUN

[DBG Rev. T3.0-23.0 20-May Copyright (c) Prime Computer, Inc. 1990]

You are now ready to begin debugging. See the Source Level Debugger User's Guide for
complete information on using DBG.

Debugging a C Program That Requires Command Line Arguments
The method used to provide a C program with its required command line arguments from
DBG differs slightly from that used with other 50 Series languages. This section applies
only to programs that take command line arguments. If you write such programs, read
this section carefully.

When you debug a C program that uses the CCMAIN or ANSI_CCMAIN library's command
line argument feature, you must use DBG's CMDLINE command to inform the debugger
about command line arguments before it begins execution of a program. Because arguments
to a program cannot be entered on DBG's command line, the CMDLINE command must
provide the necessary arguments before DBG executes the program.

B-2

Debugging C Programs

The format of the CMDLINE command is

CMDLINE

For example, if you execute the C program MYPROGRAM at PRIMOS command level by
entering

OK, RESUME MYPROGRAM.RUN -0PTI0N_1 -OPTI0N_2 ARG

you execute it under DBG by the following series of commands:
OK, DBG MYPROGRAM.RUN

[DBG Rev. T3.0-23.0 20-May Copyright (c) Prime Computer, Inc. 1990]

> CMDLINE
Enter command line:
MYPROGRAM -0PTI0N_1 -0PTI0N_2 ARG
>

You are now ready to begin debugging. The program is given the proper arguments when
execution begins.

Debugging Programs That Use the CCMAIN or ANSI_CCMAIN Library
If you link your program with one of the CCMAIN libraries (either CCMAIN or
ANSI_CCMAIN) in order to emulate the command line argument features of the UNIX
operating system, your program will start not with your own mainO routine but with a
routine called cc$main(). If you wish to debug such a program, you should be aware of
two limitations:

• In a program linked with a CCMAIN library, the CCMAIN library's routines are the
first routines to execute. Because the CCMAIN library's routines are not compiled in
debug mode, you cannot single-step through them.

• To set a breakpoint at the entry to your main routine, do not give the DBG
command

BRK

with no arguments. This command will result in an error message. Instead, give the
command

BRK mainWENTRY

where main is the name of your mainO routine.

• Another way of getting to your mainO routine is by giving the command

ENV main

DBG will respond "New language is C."

For information about setting breakpoints and single-stepping, see the Source Level Debugger
Guide.

B-3

C User's Guide

DBG AND C LANGUAGE CONSTRUCTS

Assignment
When you use DBG's evaluation command (:) along with any of the special C assignment
operators = += -= *= /= %= »= «= &= ~= |= assignment is implicitly performed. This
means that expressions are evaluated in DBG in exactly the same way they are evaluated
in C programs. (Ordinarily, you must use DBG's LET command to assign values.) For
example, if X equals 1, you can use the evaluation command with the += operator in the
following way:

> : x += 2
X = 3

In the example above, the value of 3 is assigned to x.

An attempt to assign a value to an rvalue (for example, an expression enclosed within
parentheses) does not cause an error and appears to be successful. However, this is an
illegal operation. DBG does not report the error. (An rvalue is a value that may appear
on the right side of an assignment statement.)

C Operators
The only C operator not supported by DBG is the cast operator. DBG supports all other
PRIMOS C operators. Furthermore, these supported operators used to evaluate expressions in
DBG are functionally identical to the corresponding operators in the PRIMOS C compiler.
All expected side effects that occur in C programs also occur when the operators are used
from DBG. For example, an increment operator (++) that precedes an integer variable
returns the value of the variable plus 1 and has the side effect of incrementing that
variable by 1. For example,

> : i = 1
I = 1
> : ++i
2
>
I

: i
= 2

Special Characters
DBG does not support the C escape character (\). Instead, use DBG's escape character (").
You can generate a null character ('VO') by evaluating a null string (""). To generate a
literal newline CXn1), enter " followed by RETURN; to generate a literal single quote,
enter "'.

B-4

Debugging C Programs

Defaults for Constants
The default for a floating-point constant is double. The default for an integer constant is
long.

The ?: Construct
DBG does not support the ?: construct. Use the if. . .else construct instead.

Character Strings
In C, character strings are stored as arrays of character, delimited by a byte that is set to
0. Use the Dollar Extent character ($) to display such an array of characters as a string
instead of as an array.

Use the Dollar Extent character in the same manner as the Star Extent character. (See the
Source Level Debugger User's Guide for a full explanation of the Star Extent character.)
However, you can use the Dollar Extent only with arrays of character or pointers to
character.
The following example illustrates the difference between the Star Extent character and the
Dollar Extent character. The program consists of the following code:

main()

{ char array_of_char[10], *ptr_to_string;
int array_of_int[10], *ptr_to_int;

strcpy (array_of_char, "testline");
ptr_to_string = array_of_char;
ptr_to_int = array_of_int;
array_of_int[l] = 5;

}

To inspect the entire array value of ARRAY_OF_CHAR, use the Star Extent character and
enter

> : ARRAY_0F_CHAR[*]

DBG displays

ARRAY_0F_CHAR(0) = 'f
ARRAY_0F_CHAR(1) = 'e'
ARRAY_0F_CHAR(2) = 's'
ARRAY_0F_CHAR(3) = 't'
ARRAY_0F_CHAR(4) = 'T
ARRAY_0F_CHAR(5) = 'i'
ARRAY_0F_CHAR(6) = 'n'
ARRAY_0F_CHAR(7) = 'e'
ARRAY_0F_CHAR(8) = ''
ARRAY_0F_CHAR(9) = ''

To inspect the value of ARRAY_OF_CHAR as a character string, use the Dollar Extent
character instead and enter

> : ARRAY_0F_CHAR[$]

B - 5

C User's Guide

DBG displays
ARRAY_0F_CHAR = "test line'

You can also use the Dollar Extent character with a pointer to character:
> : PTR_T0_STRING[$]

DBG displays

PTR_T0_STRING = 'testline'

Using the Dollar Extent character on something other than an array of characters is illegal.
For example,

> : ARRAY_0F_INT[$]
Illegal operation with dollar extent. Only arrays of character are
permitted.
ARRAY_OF_INT[$]

DBG displays the promoted type and value of an argument within a function. For
example, a char with value 'c' shows as 195, and its type is int within the subroutine.
This is also true when you use the DBG command ARGS to display the values of the
arguments of a function. You may evaluate a character variable within a function as a
char by designating a print mode of ASCII in the evaluation statement.

SAMPLE DBG SESSION

Suppose you have written a C program that takes a positive number and returns the next
power of 2 that is greater than this number. The program compiles and links successfully,
but watch what happens when you execute it:

OK, CC TEST -DEBUG
[CC Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
00 Errors and 00 Warnings detected in 23 lines and 90 include lines.
OK, BIND -L0 TEST -LI CCLIB -LI
[BIND T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
BIND COMPLETE
OK, RESUME TEST
Get power of 2 greater than any positive number
To exit the program, enter 0
Enter a positive number
11
The power of 2 greater than this number is. . .
16
Enter a positive number
4
The power of 2 greater than this number is. . .
4

Enter a positive number
0
OK,

Notice that the program correctly gives the next power of 2 greater than 13, which is 16.

B-6

Debugging C Programs

But it also returns, incorrectly, 4 as the next power of 2 greater than 4. You enter DBG
and look at the source program:

OK, DBG TEST

[DBG Rev. T3.0-23.0 20-May Copyright (c) Prime Computer, Inc. 1990]

> SOURCE TOP
> SOURCE PRINT 24
NULL

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

^include <stdio.h>
main()
{

int x;
printf("Get power of 2 greater than any positive number\n");
printf("To exit the program, enter 0\n");
printf("Enter a positive number\n");
scanf("%d", &x);
while (x != 0)
{

fun(x) ;
printf("Enter a positive number\n");
scanf("%d", &x);

}
}
fun(x)
int x;
{

int i;
for (i = l; i < x; i <<= 1);

printf("The power of 2 greater than this number is. . .\n");
p r i n t f (" Z 2 d \ n " , i) ;

}

To make sure your input is read correctly, place a breakpoint on source line 9, restart the
program, and check the value of variable x:

> BREAKPOINT 9
> RESTART
Get power of 2 greater than any positive number
To exit the program, enter 0
Enter a positive number
4

**** breakpointed at MAIN\9
> j_X
X = 4
>

Now that you know that the value of x has been assigned correctly, you suspect that tne
problem lies in the function fun. You step into this function at source line 11, then make
sure the argument for the function has been successfully passed:

> BREAKPOINT 11
> CONTINUE

**** breakpointed at MAINUl
> STEPIN

B-7

C Users Guide

**** "in" completion at FUN\20
> ARGUMENTS
X = 4
>

The argument x for function fun has been passed correctly. Therefore, you decide to trace
the value of i, because it is the only variable whose value changes in this function:

> WATCH I
> CONTINUE
The value of FUNU has been changed at FUN\20

from 1
t o 2

The value of FUNU has been changed at FUN\20
from 2
t o 4

The power of 2 greater than this number is. . .
4

Enter a positive number
3

**** breakpointed at MAIN\9
> QUIT
OK,

You now notice that variable i failed to loop the appropriate number of times. Your loop
should stop as soon as the value of i is greater than or equal to the value of x; and, in
this case, i's value is equal to x's value. Instead of

i < x

your final loop value for i should read
i <= x

After you correct the mistake, you run the program again, and it executes successfully:
OK, RESUME TEST
Get power of 2 greater than any positive number
To exit the program, enter 0
Enter a positive number
33
The power of 2 greater than this number is. . .
64
Enter a positive number
11
The power of 2 greater than this number is. . .
16
Enter a positive number
4
The power of 2 greater than this number is. . .
8

Enter a positive number
0
OK,

B-8

OPERATOR PRECEDENCE AND ASSOCIATIVITY

Table C-l lists the C operators and their order of evaluation.

TABLE C-l. Operator Precedence Table

Operator Associativity

Primary: () [] - > . Left to right

Unary: ! - ++ (type) * & sizeof Right to left

Multiplicative: * / % Left to right

Additive: + - Left to right

Shift: « » Left to right

Relational: < < = > > = Left to right

Equality: — != Left to right

Bitwise: Left to right

Bitwise: Left to right
Bitwise: ** Left to right

Logical: & & Left to right

Logical: Left to right

Conditional: ? : Right to left
Assignment: = += -= etc. Right to left
comma: Left to right

Asterisks (*) indicate defaults.

C-1

SUMMARY OF C LIBRARY FUNCTIONS

This appendix contains a set of tables listing C functions by the type of action performed.
A list of these tables appears below.

Table Number Table Name

D- l D iagnost ics L ibrary Funct ions
D-2 Character Handling Library Functions
D-3 Local izat ion L ibrary Funct ions
D-4 Mathemat ics L ibrary Funct ions
D-5 Non-local Jumps Library Functions
D-6 Signal Handling Library Functions
D-7 Variable Arguments Library Functions
D-8 Inpu t /Outpu t L ib ra ry Func t ions
D-9 Random Sequence Generation Library Functions
D-10 Error Handling Library Functions
D-ll String Conversion Library Functions
D-l2 Memory Management Library Functions
D-l3 Communication With Environment Library Functions
D-14 Searching and Sorting Utilities Library Functions
D-l5 Integer Arithmetic Library Functions
D-l6 Multibyte Character and String Handling Library Functions
D-l7 String Handling Library Functions
D-l 8 Date and Time Library Functions
D-l 9 Miscellaneous Library Functions

In these tables, an asterisk (*) after a function name indicates that the function is part of
the ANSI C library.

D-1

C User's Guide

Function

assert() *

TABLE D-l. Diagnostics Library Functions

Description

Adds runtime diagnostics to programs. Available in 32IX
mode only.

TABLE D-2. Character Handling Library Functions

Function Argument that Results in Nonzero Return Value

isalnum() *

isalpha() *
isascii()

iscntrl() *

isdigit() *

isgraph() *
islower() *

ispascii()

isprint() *

ispunct() *

isspace() *

isupper() *

isxdigit() *

ASCII alphanumeric character

ASCII alphabetic character

Valid ASCII character

Nonprinting ASCII character
Decimal digit character

Graphic ASCII character
Lowercase alphabetic ASCII character

Valid Prime ASCII character

ASCII printing character

ASCII punctuation character

White space character (tab, return, form feed, newline)

Uppercase ASCII character
Hexadecimal digit

TABLE D-3. Localization Library Functions

Function Description

localeconv() *

setlocale() *

Sets components of the current locale.

Changes or queries a program's entire current locale or por
tions of it.

D-2

Summary of C Library Functions

TABLE D-4. Mathematics Library Functions

Function Returned Value

acos<) *

asin() *

atan() *

atan2() *

cabs()

ceil() *

cos() *

cosh() *

exp() *
fabsO *

floorO *

f mod() *

f rexp() *

hypot()

ldexp() *

log() *

loglOO *

modf () *

pow() *

sin() *

sinh() *

A value in the range 0 to it, which is the arc cosine of the
argument expressed in radians.
A value in the range -7T/2 to it/2, which is the arc sine of
the argument expressed in radians.

A value in the range -it/2 to n/2, which is the arc tangent
of the argument expressed in radians.

A value in the range -it to it, which is the arc tangent of
the two values.

sqrt(x2 + y2).
(As a double) the smallest integer that equals or is greater
than the argument.

The cosine of the argument expressed in radians.

The hyperbolic cosine of the argument.

The base e raised to the power of the argument.

The absolute value of a floating-point number.

(As a double) the largest integer that is less than or equal
to the argument.

The floating-point remainder of the first argument divided by
the second argument.

The mantissa of a double value.

sqrt(x2 + y2).
The quantity x * 2exp.

The natural (base e) logarithm of the argument, which must
be double.

The natural (base 10) logarithm of the argument, which must
be double.

The positive fraction part of a specified double.

The first argument raised to the power of the second ar
gument.
A double value that represents the sine of the argument ex
pressed in radians.
A double value that represents the hyperbolic sine of the ar
gument.

D-3

C User's Guide

Function

sqrt() *
tan() *

tanh() *

TABLE D-4. Mathematics Library Functions (continued)

Returned Value

The square root of the argument.

A double value, which is the tangent of the argument ex
pressed in radians.
A double value, which is the hyperbolic tangent of the
double argument.

TABLE D-5. Non-local Jumps Library Functions

Function Description

longjmp() * Restores the context of a calling function that was stored in
an environment buffer with the setjmrX) function.

setjmp() * Saves the context of the calling function in an environment
buffer for a subsequent longjmp() call.

TABLE D-6. Signal Handling Library Functions

Function Description

raise() *

signal() *

Sends the signal specified by the argument to the program

Determines how conditions that occur during execution will
be handled. Available in 32IX mode only.

TABLE D-7. Variable Arguments Library Functions

Function Description

va start() *

va arg() *

va_end() *

Initializes a variable argument list.

Retrieves the next argument in a variable argument list.

Enables a normal return from a function with a variable ar
gument list.

D-4

Summary of C Library Functions

TABLE D-8. Input/Output Library Functions

Function Description

bio$primosf ileunit()
chrcheck()

close()

copy()
creat()

delete()

fcloseC) *

fdopen()
f dtm()

fflushO *

fgetcO *

f getname()

f getpos() *

fgets() *

f ileno()

fopen() *

fprintf() *
f putc() *

f puts() *

f read() *

f reopen() *

frwlock()

f scanf () *
f seek() *

f setpos() *

fsize()

Returns the PRIMOS file unit corresponding to a filelD.

Performs character checking.

Closes a specified file.

Copies a file to a new location.

Opens a specified file and assigns access rights to the file.
Deletes a specified file.

Closes a specified file and flushes any associated buffer.

Associates a file pointer with a specified integer filelD.

Returns the modification time for a specified file.

Writes out buffered information to a specified file.

Returns the next character from a specified file. This function
generates an actual function call.
Returns the PRIMOS pathname associated with an integer
filelD.
Stores the current value of the specified stream's file position
indicator.

Reads a line from a specified file. The read line is ter
minated by an ASCII NULL character (\0).

Returns an integer filelD.

Opens a specified file.
Performs formatted output to a specified file.

Writes a single character to specified file.

Writes a character string to a specified file.

Reads a specified number of items from a file.

Reassigns the address of a specified file and opens the file.
Returns the current read/write lock for a specified file.

Performs formatted output from a specified file.

Positions the file to a specified byte offset in the file.

Sets the file position indicator for the specified stream.

Returns the size in bytes of a specified file.

D-5

C User's Guide

Function

TABLE D-8. Input/Output Library Functions (continued)

Returned Value

f stat()

ftelK) *

f type()
f write() *

getc() *

getchar() *

geth()

getname()

gets() *

getw()
lseek()

move()

open()

printf() *

putc() *

putcharC) *

puth()

puts() *

putw()
read()

remove() *

rename() *

rewind() *

Returns the status of a previously open file.

Returns the current byte offset to the specified stream file.

Returns the type of a specified file.

Writes a specified number of items to a file.

Returns the next character from a specified file (implemented
as a macro).

Returns the next character from the standard input device
(implemented as a macro).
Reads two characters from a specified file.

Returns the PRIMOS pathname associated with an integer
filelD.
Reads a line from the standard input device. The newline
character is replaced by the ASCII NULL character (\0).

Reads four characters from a specified input file.

Positions a file to an arbitrary byte position and returns the
new position as a long integer value.

Moves a specified file to a specified new location.

Opens a specified file.
Performs formatted output to the standard output device.

Writes a single character to a specified file (implemented as a
macro).
Writes a single character to the standard output device (im
plemented as a macro).
Writes two characters to an output file as a short int.
(Type conversion does occur.)
Writes a character string to the standard output device. A
newline character is appended to the output.

Writes four characters to a specified output file.
Reads bytes from a specified file and places them in a
buffer.

Causes a file to become inaccessible.

Causes a file to be known by a new name.

Rewinds to the beginning of the file.

D-6

Summary of C Library Functions

TABLE D-8. Input/Output Library Functions (continued)

Function Returned Value

scanf () *

seek()

setbufO *

setmodC)

setvbuf() *

sprintfC) *
sscanf C) *

statC)

tellC)

tmpf ileC) *

tmpnamC) *

ungetcC) *

vfprintfC) *

vprintfC) *

vsprintfC) *

writeC)

Performs formatted input from the standard input device.

Positions a file to an arbitrary byte position.

Associates a buffer with an input or output file.

Sets access rights on a specified file.

Determines how a stream will be buffered.

Performs formatted output to a character string in memory.

Performs formatted input from a specified character string in
memory.
Fills a stat structure with information about a specified file.

Returns the current byte position in a file specified by a
fi le lD.
Creates a temporary binary file that will be removed when
closed or upon program termination.

Creates a character string that can be used in place of the s
argument in function calls.
Writes a character to a file buffer and positions the file be
fore the character.

Performs formatted output of a variable argument list to a
specified file.
Performs formatted output of a variable argument list to the
standard output device.

Performs formatted output of a variable argument list to a
character string in memory.

Writes a specified number of bytes from file buffer to a file.

TABLE D-9. Random Sequence Generation Library Functions

Function

randC) *

srandC) *

Description

Pseudo-random numbers in the range 0 through 2

Reinitializes the random number generator.

- 1.

D-7

C User's Guide

TABLE D-10. Error Handling Library Functions

Function Description

clearerrC) * Resets the error and end-of-file indicators for a file.

feofC) * Tests a specified file to determine if the end-of-file has been
reached.

ferrorC) * Returns a nonzero integer if an error condition is encountered
during a read or write operation.

perrorC) * Displays a brief message at your terminal describing the last
error encountered.

TABLE D-ll. String Conversion Library Functions

Function Conversion Performed

atofC) *

atoiC) *

atol() *

ecvt()

fcvtC)

strtodC) *

strtolC) *

strtoulC) *

toasciiC)

tolowerC) *

topasciiC)

toupperC) *

ASCII string to floating-point numeric value.
ASCII string to integer numeric value.

ASCII string to long integer numeric value.

double value to NULL-terminated ASCII string.

double value to NULL-terminated ASCII string.

ASCII string to double representation.

ASCII string to long integer representation.

ASCII string to unsigned long integer representation.

Character or integer to ASCII character (by ANDing the value
with 0377).

Uppercase ASCII character to lowercase ASCII character.
Character or integer to Prime ASCII character (by ANDing
the value with 0377 and then ORing the value with 0200).

Lowercase ASCII character to uppercase ASCII character.

D-8

Summary of C Library Functions

Function

callocC) *

cf reeC)

freeC) *

mallocC) *

reallocC) *

TABLE D-l2. Memory Management Library Functions

Description

Allocates an area of memory.

Frees a previously allocated area of memory.

Frees a previously allocated area of memory.

Allocates a contiguous area of memory whose size in bytes is
supplied as an argument.

Changes the size of an area of memory that was previously
allocated.

TABLE D-13. Communication With Environment Library Functions

Function

abortC) *

atexitC) *

cuseridC)

exitC) *

g$amiix()

getenvC) *

gtermC)

gvgetC)

gvsetC)
isattyC)
stermC)

systemC) *

Description

Aborts program execution.

Registers a function to be called at normal program termina
tion.

Returns a pointer to a character string containing the user ID
of the current process.

Terminates an executing process.

Determines if the current machine is capable of executing C
32IX-mode code.

Searches the environment list for the specified global variable
and returns its value.

Obtains current terminal characteristics.

Returns a pointer to a static character array that contains the
value of the named PRIMOS global variable.

Changes the value of a PRIMOS global variable.
Determines if the current process is running from a terminal.

Sets terminal characteristics.
Executes its argument as a PRIMOS command line.

D-9

C User's Guide

TABLE D-l4. Searching and Sorting Utilities Library Functions

Function

bsearch() *

qsort() *

Returned Value

Searches an array for the given object using the supplied
comparison function.
Sorts an array using the supplied comparison function.

Function

abs() *

divC) *

labsC) *

IdivC) *

TABLE D-l5. Integer Arithmetic Library Functions

Returned Value

The absolute value of an integer.

The quotient and remainder of the division on integer types.

The absolute value of a long integer.

The quotient and remainder of the division on long integer
types.

TABLE D-16. Multibyte Character and String Handling Library Functions

Function Description

mblenC) *

mbstowcsC) *

mbtowcC) *

wcstombsC) *

wctombC) *

Determines the number of bytes comprising a multibyte
character.

Converts a sequence of multibyte characters into a sequence
of corresponding codes.

Determines the number of bytes comprising a multibyte
character and its corresponding code.

Converts a sequence of codes into a sequence of multibyte
characters.

Determines the number of bytes needed to represent a mul
tibyte character and stores it.

D-10

Summary of C Library Functions

TABLE D-17. String Handling Library Functions

Function Description

index()

memchrC) *

memcmpC) *

memcpyC) *

memmoveC) *

memsetC) *

rindexC)

strcatC) *

strchrC) *

strcmpC) *
strcollC) *

strcpyC) *

strcspnC) *

strerrorC) *

strlenC) *

strncatC) *

strncmpC) *

strncpyC) *

strpbrkC) *

Returns the address of the first occurrence of a specified
character in a NULL-terminated string.

Locates the first occurrence of a character in an object.

Compares a given number of characters in one object to
another.

Copies a specified number of characters from one object to
another.

Copies a specified number of characters from one object to
another.

Copies a character into each element of an object.
Returns the address of the last occurrence (rightmost) of a
specified character.
Concatenates two strings.

Returns the address of the first occurrence of a given charac
ter in a NULL-terminated string (synonymous with the
index() library function).

Compares two ASCII character strings.

Compares two strings using the LC COLLATE category of
the current locale.

Copies one argument string into another argument string.
Searches a string for a character in a specified set of charac
ters.

Maps an error code to a message that is displayed at your
terminal.

Returns the length of a string of ASCII characters. The
returned length does not include the terminating NULL
character (\0).

Concatenates two strings up through a maximum number of
characters.

Compares two ASCII strings up through a maximum number
of characters.

Copies a maximum number of characters from one string to
another string.

Searches a string for a specified set of characters.

D-11

C User's Guide

Function

TABLE D-17. String Handling Library Functions (continued)

Returned Value

strrchrC) *

strspnC) *

strstrC) *

strtokC) *

strxf rmC) *

Returns the rightmost position of a specified character in a
string of characters (synonymous with the rindex() library
function).

Searches for a character that is not in a specified set of
characters.

Locates the first occurrence of a sequence of characters in a
string.
Breaks a string into a sequence of tokens.

Transforms a string.

TABLE D-18. Date and Time Library Functions

Function

asctime() *

clockC) *

ctimeC) *

dif f timeC) *

f timeC)

gmtime() *

localtime() *

mktimeC) *

strf timeC) *

timeC) *

timerC)

Description

Converts local time into a string.

Returns an estimate in seconds of processor time used.

Converts a numerical time to a ASCII string.

Returns the difference in seconds between two times.

Returns the elapsed time in a timeb structure.

Converts time in terms of seconds into Coordinated Universal
Time.

Converts a time to a time structure.

Converts local time into time in terms of seconds.

Performs formatted output of time/date information to a
character string in memory.

Returns in seconds the time elapsed since 00:00:00, Jan. 1,
1970.

Raises the PRIMOS ALARMS condition after a specified num
ber of minutes have elapsed.

D-12

Summary of C Library Functions

TABLE D-19. Miscellaneous Library Functions

Function Description

accessC)

chdirC)

f existsC)

getmodC)
lsdirC)

mkdirC)

primospathC)

sleep()
stat()

Checks for access rights.

Changes the current working directory.
Checks for the existence of a specified PRIMOS pathname.

Returns the access rights of a specified file.

Returns a pointer to a static character array containing the
next filename in an open directory.

Creates a specified directory.

Converts a UNIX operating system pathname to a PRIMOS
pathname.

Suspends the execution of the current process.
Fills a stat structure with information concerning a specified
file.

D-13

C DATA FORMATS

The data formats in this appendix are used by PRIMOS C. For comparisons with other
compilers and CPUs, please consult the appendix entitled C Reference Manual in the
Kernighan and Ritchie text.

In the PRIMOS implementation of C, int is the same as long int.

DATA FORMATS

Although the character boundary on a 50 Series machine is a 16-bit halfword, arrays of
characters are packed with two characters per halfword. Each member of a structure or
union (except the bit fields) starts on a 16-bit boundary. Figure E-1 shows the C data
formats.

E-1

C User's Guide

CDszo
TD
CD
C

inc
3

COno

a>

CO u1

romoted cha

1 8 int containing a p

•co (\>i _ -v(fi
-aCDco
(ficru
•cosz
Ui

•a
CD

a
' (fi
d

I
■a
cz
CD

C D

JDC
'o*- a.

CQ

H I

CD

oa.

ico

.Q
i

C\J
CO

OQ

■■=" 9
boba co
z% 2^
c o - ^ *u-Oi lD
II li II

i O c c
^ U .QILLJ
CO

CD
TD
O

X
CM
CO

a5
£
z
TD
o
COI

l _
CD
. Q
er>

Z
c
CD
E
o>
CD

C/)

'oa.

CO

oc
DC
U_

OQ

a>
co to

CQqqO

U . C C 0 Q

i n c c
,t ll-CEGq
CO
CM

FIGURE E-1. C Data Formats

E - 2

THE PRIME EXTENDED CHARACTER SET

As of Rev. 21.0, Prime expanded its character set. The basic character set, known as Prime
ASCII, remains the same as it was before Rev. 21.0; it is the ANSI ASCII 7-bit set (called
ASCII-7), with the 8th bit turned on. However, the 8th bit is now significant; when it is
turned off, it signifies a different character. Thus, the size of the character set has
doubled, from 128 to 256 characters. This expanded character set is called the Prime
Extended Character Set (Prime ECS).

Prime ASCII, the pre-Rev. 21.0 character set, is a proper subset of Prime ECS. These
characters have not changed. Software written before Rev. 21.0 continues to run exactly as
it did before. Software written at Rev. 21.0 that does not use the new characters needs no
special coding to use the old ones.

Prime ECS support is automatic at Rev. 21.0. You may begin to use characters that have
the 8th bit turned off. However, the extra characters are not available on most printers
and terminals. Check with your System Administrator to find out whether you can take
advantage of the new characters in Prime ECS.

Table F-l shows the Prime Extended Character Set. The pre-Rev. 21.0 character set consists
of the characters with decimal values 128 through 255 (octal values 200 through 377).
The characters added at Rev. 21.0 all have decimal values less than 128 (octal values less
than 200).

F-1

C Users Guide

SPECIFYING PRIME ECS CHARACTERS

Direct Entry
On terminals that support Prime ECS, you can enter the printing characters directly; the
characters appear on the screen as you type them. For information on how to do this, see
the appropriate manual for your terminal.
A terminal supports Prime ECS if

• It uses ASCII-8 as its internal character set.

• The TTY8 protocol is configured on your asynchronous line.

If you do not know whether your terminal supports Prime ECS, ask your System
Administrator.

On terminals that do not support Prime ECS, you can enter any of the ASCII-7 printing
characters (characters with a decimal value of 160 or higher) directly by just typing them.

Octal Notation
If you use the Editor (ED), you can enter any Prime ECS character on any terminal by
typing a caret ("), followed by the octal value of the character, as given in Table F-l.
You must type all three digits, including leading zeroes.

Before you use this method to enter any of the ECS characters that have decimal values
between 32 and 127, first specify the following ED command:

MODE CKPAR

This command permits ED to print as ~nnn any characters that have a first bit of 0.

SPECIAL MEANINGS OF PRIME ECS CHARACTERS

PRIMOS, or an applications program running on PRIMOS, may interpret some Prime ECS
characters in a special way. For example, PRIMOS interprets "P as a process interrupt. ED,
the Editor, interprets the backslash (\) as a logical tab.

For a detailed description of how PRIMOS interprets the following Prime ECS characters, see
the discussion in the PRIMOS User's Guide of special terminal keys and special characters:

~ \ " ? ~P ~S ~Q _ ;

F-2

The Prime Extended Character Set

C PROGRAMMING CONSIDERATIONS
At Rev 21.0, Prime ECS support was added to C through the use of the include file
PRIME_ECS_CHARS.H.INS.CC, which is in the top-level directory SYSCOM on your system.

This file contains a number of #define statements of the form

#define BEL_CHAR '\207'
#define BEL_STR "\207"

Each character in the Prime character set is defined by its octal value, both as a character
constant and as a string constant. The above example shows the definition for the
character BEL_CHAR and for the string BEL_STR. In Prime ECS, both of these have the
value 207 octal.

You may use these characters and strings in a program, as shown in the following example.
#inc lude <std io .h>
#include <prime_ecs_chars.h>
inc lude <s t r ing .h>
main()
{

char message[100], ch;

message[0] = (char)NULL; /* Clean out messaged string */
strcat(message, "ATTENTION!\n");
strcat(message, BEL_STR); /* Use of ECS symbol */
puts(message);

ch = BEL.CHAR; / * Use of ECS symbol * /
puts("ATTENTION!\n");
putchar(ch);

puts("ATTENTION!"BEL_STR"\n"); /* Use of auto-concatenation */
}

Notes
All of the preprocessor symbols supplied in PRIME_ECS_CHARS.H.INS.CC are in
uppercase.

PRIMOS C automatically concatenates two string literals. That is, the string

"Hello ""there.\n"

is functionally equivalent to the string

"Hello there.\n"

Automatic string concatenation is part of Prime ECS and is also part of the ANSI C
standard. It is an extension to the 1978 C language.

F-3

C User's Guide

PRIME EXTENDED CHARACTER SET TABLE
Table F-l contains all of the Prime ECS characters, arranged in ascending order. This order
provides both the collating sequence and the way that comparisons are done for character
strings.

For each character, the table includes the graphic, the mnemonic, the description, and the
binary, decimal, hexadecimal, and octal values. The preprocessor symbols defined in
PRIME_ECS_CHARS.H.INS.CC consist of the mnemonic plus _CHAR and _STR. For
example, the mnemonic BEL has the two definitions BEL_CHAR and BEL_STR. A blank
entry indicates that the particular item does not apply to this character. The graphics for
control characters are specified as "character; for example, "P represents the character
produced when you type P while holding the control key down.

Characters with decimal values from 000 to 031 and from 128 to 159 are control
characters.

Characters with decimal values from 032 to 127 and from 160 to 255 are printing
characters.

F-4

The Prime Extended Character Set

TABLE F-l. The Prime Extended Character Set

Graphic Mnemonic Descript ion Binary Decimal Hex Octal

RES1 Reserved for future
standardization

0000 0000 000 00 000

RES2 Reserved for future
standardization

0000 0001 001 01 001

RES3 Reserved for future
standardization

0000 0010 002 02 002

RES4 Reserved for future
standardization

0000 0011 003 03 003

IND Index 0000 0100 004 04 004
NEL Next line 0000 0101 005 05 005
SSA Start of selected area 0000 0110 006 06 006
ESA End of selected area 0000 0111 007 07 007
HTS Horizontal tabulation set 0000 1000 008 08 010
HTJ Horizontal tab with

justify
0000 1001 009 09 011

VTS Vertical tabulation set 0000 1010 010 0A 012
PLD Partial line down 0000 1011 011 0B 013
PLU Partial line up 00001100 012 0C 014
Rl Reverse index 0000 1101 013 0D 015
SS2 Single shift 2 0000 1110 014 0E 016
SS3 Single shift 3 0000 1111 015 OF 017
DCS Device control string 0001 0000 016 10 020
PU1 Private use 1 0001 0001 017 11 021
PU2 Private use 2 0001 0010 018 12 022
STS Set transmission state 0001 0011 019 13 023
CCH Cancel character 0001 0100 020 14 024
MW Message waiting 0001 0101 021 15 025
SPA Start of protected area 0001 0110 022 16 026
EPA End of protected area 0001 0111 023 17 027
RES5 Reserved for future

standardization
0001 1000 024 18 030

RES6 Reserved for future
standardization

0001 1001 025 19 031

RES7 Reserved for future
standardization

0001 1010 026 1A 032

CSI Control sequence
introducer

0001 1011 027 1B 033

ST String terminator 0001 1100 028 1C 034
OSC Operating system

command
0001 1101 029 1D 035

PM Privacy message 0001 1110 030 1E 036

F-5

C User's Guide

TABLE F-l. The Prime Extended Character Set (Continued)

Graphic Mnemonic Descript ion Binary Decimal Hex Octal

APC Application program
command

0001 1111 031 1F 037

NBSP No-break space 0010 0000 032 20 040
i INVE Inverted exclamation

mark
0010 0001 033 21 041

e CENT Cent sign 0010 0010 034 22 042
£ PND Pound sign 0010 0011 035 23 043
a CURR Currency sign 0010 0100 036 24 044
¥ YEN Yen sign 0010 0101 037 25 045
i BBAR Broken bar 0010 0110 038 26 046
§ SECT Section sign 0010 0111 039 27 047
•• DIA Diaeresis, umlaut 0010 1000 040 28 050
© COPY Copyright sign 0010 1001 041 29 051
a FOI Feminine ordinal

indicator
00101010 042 2A 052

" LAQM Left angle quotation
mark

00101011 043 2B 053

—i NOT Not sign 0010 1100 044 2C 054
SHY Soft hyphen 00101101 045 2D 055

© TM Registered trademark
sign

00101110 046 2E 056

MACN Macron 0010 1111 047 2F 057
0 DEGR Degree sign 0011 0000 048 30 060
+ PLMI Plus/minus sign 0011 0001 049 31 061
2 SPS2 Superscript two 0011 0010 050 32 062
3 SPS3 Superscript three 0011 0011 051 33 063
' AAC Acute accent 0011 0100 052 34 064
M LCMU Lowercase Greek letter

(i, micro sign
0011 0101 053 35 065

1 PARA Paragraph sign, Pilgrow
sign

0011 0110 054 36 066

• MIDD Middle dot 0011 0111 055 37 067
3

CED Cedilla 0011 1000 056 38 070

' SPS1 Superscript one 0011 1001 057 39 071
o MOI Masculine ordinal

indicator
0011 1010 058 3A 072

" RAQM Right angle quotation
mark

0011 1011 059 3B 073

' / 4 FR14 Common fraction
one-quarter

0011 1100 060 3C 074

F-6

The Prime Extended Character Set

TABLE F-l. The Prime Extended Character Set (Continued)

Graphic Mnemonic Descript ion Binary Decimal Hex Octal

1/2 FR12 Common fraction
one-half

0011 1101 061 3D 075

3/4

i
A

FR34

INVQ
UCAG

Common fraction
three-quarters
Inverted question mark
Uppercase A with grave
accent

0011 1110

0011 1111
0100 0000

062

063
064

3E

3F
40

076

077
100

A UCAA Uppercase A with acute
accent

0100 0001 065 41 101

A UCAC Uppercase A with
circumflex

0100 0010 066 42 102

A
A

UCAT
UCAD

Uppercase A with tilde
Uppercase A with
diaeresis

0100 0011
0100 0100

067
068

43
44

103
104

A* UCAR Uppercase A with ring
above

01000101 069 45 105

/E UCAE Uppercase diphthong 0100 0110 070 46 106

9 UCCC Uppercase C with
cedilla

0100 0111 071 47 107

E UCEG Uppercase E with grave
accent

01001000 072 48 110

E UCEA Uppercase E with acute
accent

0100 1001 073 49 111

E UCEC Uppercase E with
circumflex

0100 1010 074 4A 112

E UCED Uppercase E with
diaeresis

01001011 075 4B 113

I UCIG Uppercase I with grave
accent

0100 1100 076 4C 114

I UCIA Uppercase I with acute
accent

01001101 077 4D 115

I UCIC Uppercase I with
circumflex

01001110 078 4E 116

T UCID Uppercase I with
diaeresis

01001111 079 4F 117

•D UETH Uppercase Icelandic
letter Eth

0101 0000 080 50 120

N
6

UCNT
UCOG

Uppercase N with tilde
Uppercase O with grave
accent

0101 0001
0101 0010

081
082

51
52

121
122

6 UCOA Uppercase O with acute
accent

0101 0011 083 53 123

r
F-7

C User's Guide

TABLE F-l. The Prime Extended Character Set (Continued)

Graphic Mnemonic Descript ion Binary Decimal Hex Octa l

6 UCOC Uppercase 0 with
circumflex

0101 0100 084 54 124

6 UCOT Uppercase 0 with tilde 0101 0101 085 55 125
6 UCOD Uppercase 0 with

diaeresis
0101 0110 086 56 126

X MULT Multiplication sign used
in mathematics

0101 0111 087 57 127

0 UCOO Uppercase 0 with
oblique line

0101 1000 088 58 130

U UCUG Uppercase U with grave
accent

0101 1001 089 59 131

U UCUA Uppercase U with acute
accent

0101 1010 090 5A 132

0 UCUC Uppercase U with
circumflex

0101 1011 091 5B 133

U UCUD Uppercase U with
diaeresis

0101 1100 092 5C 134

Y UCYA Uppercase Y with acute
accent

0101 1101 093 5D 135

P UTHN Uppercase Icelandic
letter Thorn

0101 1110 094 5E 136

fl LGSS Lowercase German
letter doubles

0101 1111 095 5F 137

a LCAG Lowercase a with grave
accent

0110 0000 096 60 140

a LCAA Lowercase a with acute
accent

0110 0001 097 61 141

a LCAC Lowercase a with
circumflex

01100010 098 62 142

a LCAT Lowercase a with tilde 0110 0011 099 63 143
a LCAD Lowercase a with

diaeresis
01100100 100 64 144

oa LCAR Lowercase a with ring
above

01100101 101 65 145

ae LCAE Lowercase diphthong ae 01100110 102 66 146
c LCCC Lowercase c with cedilla 01100111 103 67 147
e LCEG Lowercase e with grave

accent
0110 1000 104 68 150

e LCEA Lowercase e with acute
accent

01101001 105 69 151

e LCEC Lowercase e with
circumflex

01101010 106 6A 152

F-8

The Prime Extended Character Set

TABLE F-l. The Prime Extended Character Set (Continued)

Graphic Mnemonic Descr ipt ion Binary Decimal Hex Octal

e LCED Lowercase e with
diaeresis

01101011 107 6B 153

\ LCIG Lowercase i with grave
accent

01101100 108 6C 154

i LCIA Lowercase i with acute
accent

01101101 109 6D 155

\ LCIC Lowercase i with
circumflex

01101110 110 6E 156

i LCID Lowercase i with
diaeresis

01101111 111 6F 157

c5) LETH Lowercase Icelandic
letter Eth

0111 0000 112 70 160

n LCNT Lowercase n with tilde 0111 0001 113 71 161
6 LCOG Lowercase o with grave

accent
0111 0010 114 72 162

6 LCOA Lowercase o with acute
accent

0111 0011 115 73 163

6 LCOC Lowercase o with
circumflex

0111 0100 116 74 164

6 LCOT Lowercase o with tilde 0111 0101 117 75 165
6 LCOD Lowercase o with

diaeresis
0111 0110 118 76 166

- r DIV Division sign used in
mathematics

0111 0111 119 77 167

0 LCOO Lowercase o with
oblique line

0111 1000 120 78 170

U LCUG Lowercase u with grave
accent

0111 1001 121 79 171

U LCUA Lowercase u with acute
accent

0111 1010 122 7A 172

u LCUC Lowercase u with
circumflex

0111 1011 123 7B 173

u LCUD Lowercase u with
diaeresis

0111 1100 124 7C 174

y LCYA Lowercase y with acute
accent

0111 1101 125 7D 175

p LTHN Lowercase Icelandic
letter Thorn

0111 1110 126 7E 176

y LCYD Lowercase y with
diaeresis

0111 1111 127 7F 177

F-9

C User's Guide

TABLE F-l. The Prime Extended Character Set (Continued)

Graphic Mnemonic Descript ion Binary Decimal Hex Octal

NUL Null 1000 0000 128 80 200
*A S0H/TC1 Start of heading 1000 0001 129 81 201
AB STX/TC2 Start of text 1000 0010 130 82 202
AC ETX/TC3 End of text 1000 0011 131 83 203
*D E0T/TC4 End of transmission 1000 0100 132 84 204
*E ENQ/TC5 Enquiry 10000101 133 85 205
AF ACK/TC6 Acknowledge 1000 0110 134 86 206
*G BEL Bell 1000 0111 135 87 207
"H BS/FEO Backspace 10001000 136 88 210
'1 HT/FE1 Horizontal tab 1000 1001 137 89 211
AJ LF/NL/FE2 Line feed 1000 1010 138 8A 212
AK VT/FE3 Vertical tab 1000 1011 139 8B 213
*L FF/FE4 Form feed 1000 1100 140 8C 214
AM CR/FE5 Carriage return 1000 1101 141 8D 215
AN SO/LS1 Shift out 10001110 142 8E 216
' 0 SI/LSO Shift in 1000 1111 143 8F 217
- p
"Q

DLE/TC7
DC1/X0N

Data link escape
Device control 1

1001 0000
1001 0001

144
145

90
91

220
221

■R DC2 Device control 2 1001 0010 146 92 222
AS DC3/X0FF Device control 3 1001 0011 147 93 223
*T DC4 Device control 4 1001 0100 148 94 224
"U
"V
" W

NAK/TC8
SYN/TC9
ETB/TC10

Negative acknowledge
Synchronous idle
End of transmission
block

1001 0101
1001 0110
1001 0111

149
150
151

95
96
97

225
226
227

* Y
CAN
EM

Cancel
End of medium

1001 1000
1001 1001

152
153

98
99

230
231

*Z SUB Substitute 1001 1010 154 9A 232
' [ESC Escape 1001 1011 155 9B 233
" \ FS/IS4 File separator 1001 1100 156 9C 234

;i GS/IS3 Group separator 1001 1101 157 9D 235

» RS/IS2
US/IS1

Record separator
Unit separator

1001 1110
1001 1111

158
159

9E
9F

236
237

SP Space 1010 0000 160 A0 240
i Exclamation mark 10100001 161 A1 241*' Quotation mark 10100010 162 A2 242
NUMB Number sign 10100011 163 A3 243
$ DOLR Dollar sign 10100100 164 A4 244
% Percent sign 10100101 165 A5 245
& Ampersand 10100110 166 A6 246

F-10

The Prime Extended Character Set

TABLE F-l. The Prime Extended Character Set (Continued)

G r a p h i c M n e m o n i c D e s c r i p t i o n Binary Decimal Hex Octa l

'
Apostrophe 10100111 167 A7 247

(Left parenthesis 10101000 168 A8 250
) Right parenthesis 1010 1001 169 A9 251
* Asterisk 10101010 170 AA 252
+ Plus sign 10101011 171 AB 253
» Comma 10101100 172 AC 254
- Minus sign 10101101 173 A D 255
. Period 10101110 174 AE 256
/ Slash 10101111 175 AF 257
0 Zero 10110000 176 B0 260
1 One 1011 0001 177 B1 261
2 Two 1011 0010 178 B2 262
3 Three 1011 0011 179 B3 263
4 Four 1011 0100 180 B4 264
5 Five 1011 0101 181 B5 265
6 Six 1011 0110 182 B6 266
7 Seven 1011 0111 183 B7 267
8 Eight 1011 1000 184 B8 270
9 Nine 1011 1001 185 B9 271
: Colon 1011 1010 186 BA 272
i Semicolon 1011 1011 187 BB 273
< Less than sign 1011 1100 188 BC 274
= Equal sign 1011 1101 189 BD 275
> Greater than sign 1011 1110 190 BE 276
? Question mark 1011 1111 191 BF 277
@ A T Commercial at sign 1100 0000 192 CO 300
A Uppercase A 1100 0001 193 C1 301
B Uppercase B 1100 0010 194 C2 302
C Uppercase C 1100 0011 195 C3 303
D Uppercase D 1100 0100 196 C4 304
E Uppercase E 1100 0101 197 C5 305
F Uppercase F 1100 0110 198 C6 306
G Uppercase G 11000111 199 C7 307
H Uppercase H 1100 1000 200 C8 310
1 Uppercase 1 11001001 201 C9 311
J Uppercase J 1100 1010 202 CA 312
K Uppercase K 11001011 203 CB 313
L Uppercase L 11001100 204 CC 314
M Uppercase M 11001101 205 CD 315
N Uppercase N 11001110 206 CE 316

F-11

C User's Guide

TABLE F-l. The Prime Extended Character Set (Continued)

Graphic M n e m o n i c D e s c r i p t i o n Binary Decimal Hex Octal

O Uppercase 0 11001111 207 CF 317
P Uppercase P 1101 0000 208 DO 320
Q Uppercase Q 1101 0001 209 D1 321
R Uppercase R 11010010 210 D2 322
S Uppercase S 1101 0011 211 D3 323
T Uppercase T 11010100 212 D4 324
U Uppercase U 1101 0101 213 D5 325
V Uppercase V 1101 0110 214 D6 326
w Uppercase W 1101 0111 215 D7 327
X Uppercase X 1101 1000 216 D8 330
Y Uppercase Y 1101 1001 217 D9 331
z Uppercase Z 1101 1010 218 DA 332
[LBKT Left bracket 1101 1011 219 DB 333
\ REVS Reverse slash,

backslash
1101 1100 220 DC 334

] RBKT Right bracket 1101 1101 221 DD 335
* C F L X C i r c u m fl e x 1101 1110 222 DE 336

Underline, underscore 1101 1111 223 DF 337
GRAV Left single quote, grave

accent
1110 0000 224 E0 340

a Lowercase a 1110 0001 225 E1 341
b Lowercase b 11100010 226 E2 342
c Lowercase c 1110 0011 227 E3 343
d Lowercase d 11100100 228 E4 344
e Lowercase e 11100101 229 E5 345
f Lowercase f 11100110 230 E6 346
g Lowercase g 11100111 231 E7 347
h Lowercase h 11101000 232 E8 350
i Lowercase i 11101001 233 E9 351
j Lowercase j 11101010 234 EA 352
k Lowercase k 11101011 235 EB 353
1 Lowercase 1 11101100 236 EC 354

m Lowercase m 11101101 237 ED 355
n Lowercase n 11101110 238 EE 356
0 Lowercase o 11101111 239 EF 357
P Lowercase p 1111 0000 240 FO 360
q Lowercase q 1111 0001 241 F1 361
r Lowercase r 1111 0010 242 F2 362
s Lowercase s 1111 0011 243 F3 363
t Lowercase t 1111 0100 244 F4 364

F-12

The Prime Extended Character Set

TABLE F-l. The Prime Extended Character Set (Continued)

iphic Mnemonic Description

u Lowercase u
V Lowercase v
w Lowercase w
x Lowercase x
y Lowercase y
z Lowercase z
{ LBCE Left brace
1 VERT Vertical line
} RBCE Right brace~ TIL Tilde

DEL Delete

Binary Decimal Hex Octal

11110101 245 F5 365
11110110 246 F6 366
11110111 247 F7 367
1111 1000 248 F8 370
1111 1001 249 F9 371
1111 1010 250 FA 372
1111 1011 251 FB 373
1111 1100 252 FC 374
1111 1101 253 FD 375
1111 1110 254 FE 376
11111111 255 FF 377

F-13

GLOSSARY

This appendix is a glossary of PRIMOS concepts and conventions.

64V mode
A segmented accumulator-based instruction set, standard on all 50 Series machines.

32IX mode
A segmented, general-register-based instruction set, available on all newer 50 Series
processors (that is, all processors numbered 2350™ or above).

Access Control List (ACL)
A list of users and their respective access rights to a file, a directory, or another object.
The PRIMOS User's Guide provides a detailed explanation of ACLs.

condition mechanism
A hardware feature of 50 Series machines. The condition mechanism directs a condition
incapable of being handled by the software (for example, division by zero, or use of the
BREAK signal) to a set of routines. These user-written routines, known as on-units,
treat the condition differently from the way it is handled by the default routine, which
normally aborts the process and returns you to PRIMOS command level. The condition
mechanism and subroutines used to invoke it are described in the Subroutines Reference
III: Operating System.

file system error code
A value returned by a file system subroutine, as described in Appendix D of the
Subroutines Reference II: File System. For example, an error code of 1 always
signals an end of file, and an error code of 15 indicates that a specified file does not
exist. Many PRIMOS C routines use the same set of error codes as a convenience to
programmers.

IX mode
See 32IX mode.

on-unit
A routine set up to handle certain conditions that might normally cause a process to
abort. See condition mechanism.

G-1

C User's Guide

pass by reference
To pass the address, rather than the value, of an argument from one routine to another.
The called routine may then modify the actual data item that is to be referenced by the
caller.

pass by value
To pass the value of an argument from one routine to another routine when a copy of
the argument is made and passed. The called routine cannot modify the original data
item.

pathname
A fully qualified PRIMOS pathname consists of a disk partition name, followed by the
names of the top-level directory and subdirectories, followed by a filename. For example,

<PART>DIR>DIR>DIR>FILE

PRIMOS
The PRIMOS operating system.

standard error (stderr)
The standard error file for C. By default, this is your terminal.

standard input (stdin)
The standard input file for C. By default, this is your terminal.

standard output (stdout)
The standard output file for C. By default, this is your terminal.

V mode
See 64V mode.

G-2

INDEX

INDEX

Symbols

$, A-4

+, A-4

Numbers

321 mode, 1-5
-32IX compiler option, 2-6, 2-12
32IX mode, 1-2, 1-5, G-l

capability of current machine, 4-24
generating object code in, 2-12
machines that support, 2-12

50SERIES preprocessor symbol, 2-34

-64V compiler option, 2-6, 2-12
64V mode, 1-2, 1-5, G-l

generating object code in, 2-12
optimization for, 2-20

Abort() library function, 4-4, 8-17
Abs() library function, 2-23, 2-32, 4-5,

8-17
Absolute value, 4-5, G-3
Access category (ACAT), 4-24

Access Control List, G-l
Access rights,

getting, 4-26
setting, 4-55

Access() library function, 4-5
ACL, G-l
Acos() library function, 4-6, 8-17
ALARMS condition, 4-64
Alarm() library function,

PRIMOS C analogue, 7-17
Alignment,

structure and union members, 2-27
structure members, 2-21

Allocating memory, 4-9, 4-35
Alphabetic, testing if a character is, 4-29
Alphanumeric, testing if a character is,

4-29
ANSI C, 8-1

function prototypes, 2-18, 8-4
standard, 1-2, 8-1
syntax checking, 2-13

-ANSI compiler option, 2-6, 2-12, 8-4
ANSILIBRARIES preprocessor macro,
8-8

-AnsiLibs command line option, 8-6
ANSI_CCMAIN library, 8-5
Arc cosine, 4-6
Arc sine, 4-6
Arc tangent, 4-7
Argc, 3-1

Index-1

C Users Guide

Argument types, promotion of, 5-4
Argv, 3-1
Array, 5-13, 5-16

indices, 5-5, 7-1
of character, B-5
passing as parameter, 5-6

ASCII testing,
for a character, 4-30
for a nonprinting character, 4-30
for a Prime ASCII character, 4-31
for a printing character, 4-31

ASCII,
character set, 4-2, F-l
converting number to Prime ASCII,

4-67
Prime ASCII, 2-14, 7-1
text files, 7-2

Asctime() library function, 8-17
Asin() library function, 4-6, 8-17
#assert preprocessor command, A-6
Assert() library function, 4-6, 8-18
Assert.h header file, 4-2, 8-3
ASSERT.H.INS.CC file, 4-2
Asynchronous device, assigning, 4-36
Asynchronous line, assigning, 4-36
Atan() library function, 4-7, 8-18
Atan2() library function, 4-7, 8-18
Atexit() library function, 8-18
Atof() library function, 4-7, 8-9, 8-19
AtoiO library function, 4-7, 4-8, 8-19
Atol() library function, 4-7, 4-8, 8-19
Attaching to directory, 4-9

B
Base e, 4-33
-BIG compiler option, 2-6, 2-13
-BINARY compiler option, 2-6, 2-13
BIND linker, 1-4, 3-4, 8-5

examples, 3-5
HELP subcommand, 3-8
MAIN subcommand, 3-6
MAP subcommand, 3-6
QUIT subcommand, 3-8

Bio$primosfileunit() library function, 4-8
-BIT8 compiler option, 2-6, 2-14
Blank compression, 7-2
BREAK signal, G-l
Bsearch() library function, 8-19
Buffer, associating with file, 4-54

Buffering, 7-4
disabling read, 4-38
disabling write, 4-38
input and output, 7-4
removing, 4-54

Byte offset,
bit of pointers, 2-30
current, 4-23
positioning at, 4-22

Byte position,
getting current, 4-63
positioning file at, 4-34

C functions, summary, D-l
Cabs() library function, 4-8, G-3
Calling other languages, 5-7
CallocO library function, 4-8, 8-19
Carriage return,

adding on output, 4-37
Case-sensitivity, 7-7
Cast,

integer to pointer, 5-7, 7-3
pointer to integer, 7-3

CC command line, 2-4
CC$ prefix, 3-3
CCLIB runtime library, 3-2
CCMAIN library, 3-1, 3-4, 8-5
Ceil() library function, 4-9, 8-20
Cfree() library function, 4-9, 4-20
Character testing,

for alphabetic, 4-29
for alphanumeric, 4-29
for ASCII, 4-30
for hexadecimal number, 4-32
for lowercase alphabetic, 4-31
for nonprinting ASCII, 4-30
for numeric, 4-30
for Prime ASCII, 4-31
for printing ASCII, 4-31
for printing, 4-30
for punctuation, 4-31
for uppercase alphabetic, 4-32
for white space, 4-32

Character,
arguments, promotion of, 7-6
boundary, 7-6
converting number to, 4-66, 4-67
finding in string, 4-59

lndex-2

INDEX

getting four as an int, 4-27
getting two as an int, 4-25
getting, 4-25
handling library functions, D-2
high bit of, 7-3
manipulation functions, 1-3
putting back, 4-68
searching string for, 4-61, 4-62
set, 7-1, F-l
strings for fopen() function, 4-18
variables, adjacent, 7-6
writing to file, 4-46
writing to standard output, 4-46

ChdiK) library function, 4-9
-CHECKOUT compiler option, 2-6, 2-14
Chmod() library function,

PRIMOS C analogue, 7-17
Chrcheck() library function, 4-9

CI preprocessor symbol, 2-34, 5-21
-CIX compiler option, 5-18, 2-6, 2-15
ClearerrO library function, 4-10, 8-20
ClockO library function, 8-20
Close() library function, 4-10
-CLUSTER compiler option, 2-6, 2-15
Command line arguments, 3-1, 3-4, 3-9,

7-4
examples, 3-9, 3-10

Command line options, 2-12, 8-6
Common blocks, 5-23, 5-25
Common logarithm, 4-33
Common variable names, 7-7
Communication with environment

library functions, D-9
Comparing strings, 4-60
-COMPATIBILITY compiler option, 2-6,

2-16
Compatibility, 1-3

UNIX, 4-43
Compilation order, controlling, 2-15
Compiler error messages, 2-4, 2-17, 2-31
Compiler options, 2-12

-32IX, 2-12
-64V, 2-12
-ANSI, 2-12
-BIG, 2-13
-BINARY, 2-13
-BIT8, 2-14
-CHECKOUT, 2-14
-ax, 2-15
-CLUSTER, 2-15

-COPY, 2-16
-DEBUG, 2-16, 3-6
-DEFINE, 2-16
-DISALLOWEXPANSION, 2-17, 2-18
-DOUBLEFLOATING, 2-17
-EXPLIST, 2-18
-FORCEEXPANSION, 2-18
-FRN, 2-19
-HARDWAREROUNDING, 2-19
-HIGHENDPROCESSORS, 2-20
-HOLEYSTRUCTURES, 2-21
-IGNOREREGISTER, 2-21
-INCLUDE, 2-21
-INPUT, 2-22
-INTEGEREXCEPTIONS, 2-22
-INTLONG, 2-22
-INTRINSIC, 2-23
-INTSHORT, 2-22
-LBSTRING, 2-23
-LISTING, 2-24
-LOWENDPROCESSORS, 2-20, 2-24
-NEWFORTRAN, 2-24
-NOANSI, 2-12
-NOBIG, 2-13
-NOBIT8, 2-14
-NOCHECKOUT, 2-14
-NOCLUSTER, 2-15
-NOCOPY, 2-16
-NODEBUG, 2-16
-NOEXPLIST, 2-18
-NOFRN, 2-19
-NOHARDWAREROUNDING, 2-19
-NOHOLEYSTRUCTURES, 2-21
-NOIGNOREREGISTER, 2-21
-NOINTEGEREXCEPTIONS, 2-22
-NOONUNIT, 2-25
-NOOPTIMIZE, 2-25
-NOOPTSTATISTICS, 2-27
-NOPACKBYTES, 2-27
-NOPOP, 2-28
-NOQUADCONSTANTS, 2-29
-NOQUADFLOATING, 2-29
-NOSAFEPOINTERS, 2-30
-NOSEGMENTSPANCHECKING, 2-30
-NOSILENT, 2-31
-NOSTATISTICS, 2-33
-NOSTRICTCOMPLIANCE, 2-33
-NOSYSOPTIONS, 2-34
-NOVERBOSE, 2-35
-NO_STORE_OWNER_FIELD, 2-33

lndex-3

C User's Guide

-OLDFORTRAN, 2-24, 2-25
-OPTIMIZE, 2-25
-OPTIONSFILE, 2-26
-OPTSTATISTICS, 2-27
-PACKBYTES, 2-27
-PARTIALDEBUG, 2-28
-PBSTRING, 2-23, 2-28
-POP, 2-28
-PREPROCESSONLY, 2-29
-PRODUCTION, 2-29
-QUADCONSTANTS, 2-29
-QUADFLOATING, 2-29
-SAFEPOINTERS, 2-30
-SEGMENTSPANCHECKING, 2-30
-SHORTCALL, 2-31
-SILENT, 2-31
-SINGLEFLOATING, 2-17, 2-31
-SOURCE, 2-31
-SPEAK, 2-32
-STANDARDINTRINSICS, 2-32
-STATISTICS, 2-33
-STORE_OWNER_FIELD, 2-33
-STRICTCOMPLIANCE, 2-33
-SYSOPTIONS, 2-34
-UNDEFINE, 2-34
-VALUEONLY, 2-34
-VERBOSE, 2-35
-XREF, 2-35
-XREFS, 2-35
COMPATIBILITY, 2-16
ERRTTY, 2-17
EXTRACTPROTOTYPES, 2-18
NOCOMPATIBILITY, 2-16
NOERRTTY, 2-17

Compiler progress messages, 2-32
Compiler statistical data, 2-33
Compiler warning messages, 2-35
Concatenating strings, 4-59
Condition mechanism, 4-4, 5-21, G-l
Condition, ALARMS, 4-64
Constants, required by library functions,

4-1
Converting,

double to string, 4-12
filePointer to filelD, 4-17
number to character, 4-67
string to numeric, 4-7

-COPY compiler option, 2-6, 2-16
Copy() library function, 4-10
Copying strings, 4-60

Cos() library function, 4-10, 8-20
Cosh() library function, 4-11, 8-20
Creat() library function, 4-11
Ctime() library function, 4-11, 8-10,

8-21
Ctype.h header file, 8-3, G-3
CTYPE.H.INS.CC file, G-3
Current directory, opening, 4-36
Cuserid() library function, 4-11
C_LIB runtime library, 3-2, 3-4

DAM files, 4-19, 4-24
opening, 4-38
segment directory, 4-24

Data formats, E-1
Data types, of library functions, 4-1
Date and time library functions, D-l2
DBG, 2-6, 2-16, B-l, B-6

partial symbol information, 2-28
production level support, 2-29

-DEBUG compiler option, 2-6, 2-16, B-2
DEBUG preprocessor symbol, 2-34

-DEBUG, 3-6
Debugging C programs, B-l
-DEFINE compiler option, 2-16, G-3
#define preprocessor command, 2-17, 7-5,

8-11, 2-28
Defined preprocessor operator A-5
Delete() library function, 4-12
Diagnostics library functions, D-2
Difftime() library function, 8-21
Directory,

creating, 4-35
file type, 4-24
getting next filename, 4-34
opening current, 4-36

-DISALLOWEXPANSION compiler option,
2-6, 2-18

Disk file, opening, 4-36
#display preprocessor command, A-6
Div() library function, 8-21
Division by zero errors, 2-22
Dollar Extent character, B-5, B-6
Dollar sign in identifiers, A-4
Double precision math, 2-17
Double, converting to string, 4-12
-DOUBLEFLOATING compiler option,

2-6, 2-17

lndex-4

INDEX

E, raising to a power of, 4-13
ECS,

See Prime Extended Character Set
(Prime ECS)

Ecvt() library function, 4-12
ED line editor, 1-4
Editors, 1-4

ED line, 1-4
#elif preprocessor command, A-4
EMACS screen editor, 1-4, 7-2
End of file,

testing for, 4-15
See also EOF,

#endif preprocessor command, 8-11
#endincl preprocessor command, A-6
ENTRY1SR file, 3-2
Enum data type, 1-3, A-1
EOF, 4-14, 4-15
EPF,

executing, 3-8
libraries, 3-2

Errno, 4-5
Errnch header file, 8-3
Error handling library functions, D-8
Error message, writing, 4-42
Error, resetting, 4-10
-ERRTTY compiler option, 2-17, G-3
Executable Program Format,

See EPF
Existence of pathname, test, 4-5, 4-16
Exit() library function, 4-13, 8-21
Exp() library function, 4-13, 8-22
-EXPLIST compiler option, 2-6, 2-18
Exponent of a double, 4-21
Extensions to the C language, A-1
External declarations, 7-7
External identifiers, 7-7

prefixes, 3-3
unreferenced, 3-6

-EXTRACTPROTOTYPES compiler option,
2-7, 2-18, 8-4

F77, 5-1, 5-6, 5-11
Fabs() library function, 2-23, 2-32, 4-5,

4-14, 8-22
Fclose() library function, 4-14, 8-22

Fcvt() library function, 4-12, 4-14
Fdopen() library function, 4-14, 8-13
Fdtm() library function, 4-15
Feof() library function, 4-15, 8-22
FerroK) library function, 4-15, 8-22
Fexists() library function, 4-15
Fflush() library function, 4-16, 8-23
Fgetc() library function, 4-16, 4-25, 8-23
Fgetname() library function, 4-16, 4-26
Fgetpos() library function, 8-23
Fgets() library function, 4-17, 4-27, 8-23
File control block, 4-17
File I/O functions, 1-3
File I/O methods, 7-2
FILE structure, 4-17, 4-21
File system error code, G-l
File unit, converting filelD to, 4-8
File,

getting information about, 4-58
positioning at a byte position, 4-34
removing a, 4-12
size, 4-22

FilelD, 4-3, 4-8, 4-36, 4-39
Filename, getting next in directory, 4-34
Fileno() library function, 4-17
FilePointer, 4-3, 4-27, 4-49
Float.h header file, 8-3
Floating-point math, 2-17
Floating-point round, instruction, 2-19
FlooK) library function, 4-17, 8-24
Fmod() library function, 8-24
Fopen() library function, 4-17, 8-13,

8-24
-FORCEEXPANSION compiler option, 2-7,

2-18
Formatted input,

from file, 4-50
from standard input, 4-50
from string in memory, 4-50

Fortran storage class 1-3, 5-8, A-3
FORTRAN, 5-1

See also F77,
Fprintf() library function, 4-19, 4-43,

8-24
Fputc() library function, 4-19, 4-46,

8-26
Fputs() library function, 4-19, 4-47,

8-26
Fread() library function, 4-19, 8-26
Free() library function, 4-20, 8-27

lndex-5

C User's Guide

Freopen() library function, 4-20, 8-13,
8-27

Frexp() library function, 4-21, 8-27
-FRN compiler option, 2-7, 2-19
Frwlock() library function, 4-21
Fscanf() library function, 4-22, 4-50,

8-27
Fseek() library function, 4-22, 8-28
Fsetpos() library function, 8-29
Fsize() library function, 4-22
Fstat() library function, 4-23
Ftell() library function, 4-23, 8-29
Ftime() library function, 4-23
Ftype() library function, 4-24
Functions,

prototypes, 2-18, 8-4
return types, 5-19
return values, 7-2

Fwrite() library function, 4-24, 8-29

G$ prefix, 3-3, 3-7, 5-7
Getc() library function, 4-25, 8-29
GetchaK) library function, 4-25, 8-30
Getenv() library function, 8-30
Geth() library function, 4-25
Getmod() library function, 4-26
Getname() library function, 4-26
Gets() library function, 4-27, 8-30
Getw() library function, 4-27
Global variable,

getting value, 4-28
setting value, 4-28

Glossary, G-l
Gmtime() library function, 8-31
Graphic,

testing if a character is, 4-30
Gterm() library function, 4-28
Gvget() library function, 4-28
Gvset() library function, 4-28

H
-HARDWAREROUNDING compiler option,

2-19, 2-7
Header files, 1-3

ANSI, 8-3
nesting, 7-5
non-ANSI, 4-1

HELP, subcommand of BIND, 3-8
Hexadecimal, testing if a character is,

4-32
-HIGHENDPROCESSORS compiler option,

2-7, 2-20
-HOLEYSTRUCTURES compiler option,

2-7, 2-21
Home directory, 4-9
Hyperbolic cosine, 4-11
Hyperbolic sine, 4-57
Hyperbolic tangent, 4-63
Hypot() library function, G-3
Hypotenuse, G-3

I
Identifier names, 1-3, 7-7, A-4

external, 5-7
Identifiers, length of, 7-7
-IGNOREREGISTER compiler option, 2-7,

2-21
-INCLUDE compiler option, 2-7, 2-21
Include files, 1-3, 2-1, 2-2

#endincl preprocessor command, A-6
ANSI, 8-3
nesting, 7-5
non-ANSI, 4-1

#include preprocessor command, 2-2,
2-21, A-5

INCLUDE$.SR file, 2-3
Index() library function, 4-29, 4-59
Inline expansion, controlling, 2-18
-INPUT compiler option, 2-7, 2-22
Input/output library functions, D-5
Int,

getting an, 4-27
size of, 7-3

Integer arithmetic library functions, D-10
-INTEGEREXCEPTIONS compiler option,

2-7, 2-22
Interfacing to other languages,

See Languages
-INTLONG compiler option, 2-7, 2-22
-INTRINSIC compiler option, 2-7, 2-23
-INTSHORT compiler option, 2-7, 2-22
Ioctl() library function,

PRIMOS C analogues, 7-17
Isalnum() library function, 4-29, 8-31
Isalpha() library function, 4-29, 8-31
IsasciK) library function, 4-30

lndex-6

INDEX

Isatty() library function, 4-30
IscntrK) library function, 4-30, 8-31
IsdigitC) library function, 4-30, 8-31
Isgraph() library function, 4-30, 8-32
IsloweK) library function, 4-31, 8-32
IspasciK) library function, 4-31
Isprint() library function, 4-31, 8-32
Ispunct() library function, 4-31, 8-32
Isspace() library function, 4-32, 8-32
Isupperv) library function, 4-32, 8-33
Isxdigit() library function, 4-32, 8-33
IX mode,

See 32IX mode

Keys, required by library functions, 4-1

Labs() library function, 8-33
Language extensions, 1-3
Languages,

calling other, 5-7
interfacing to other, 7-5

-LBSTRING compiler option, 2-23, G-3
Lconv() library function, 8-33
Ldexp() library function, 4-32, 8-33
Ldiv() library function, 8-34
Libraries,

ANSI C, 8-5, 8-6
changing from command line, 8-6
EPF, 3-2
runtime, 3-2
subroutine, 1-4

ANSILIBRARIES preprocessor
macro, 8-8

Library functions, 4-1
abortO, 4-4, 8-17
abs(), 4-5, 8-17
access(), 4-5
acosO, 4-6, 8-17
ANSI C, 8-15
asctime(), 8-17
asinO, 4-6, 8-17
assertO, 4-6, 8-18
atanO, 4-7, 8-18
atan2(), 4-7, 8-18
atexit(), 8-18
atof(), 4-7, 8-19

atoiO, 4-8, 8-19
atolO, 4-8, 8-19
bio$primosfileunit(), 4-8
bsearchO, 8-19
cabsO, 4-8, 4-29
calloc(), 4-8, 8-19
ceilO, 4-9, 8-20
cf ree(), 4-9
chdiiK), 4-9
chrcheck(), 4-9
clearerK), 4-10, 8-20
clockO, 8-20
closeO, 4-10
copy(), 4-10
cos(), 4-10, 8-20
coshO, 4-11, 8-20
creat(), 4-11
ctimeO, 4-11, 8-21
cuserid(), 4-11
deleteO, 4-12
difftmeO, 8-21
div(), 8-21
ecvt(), 4-12
exitO, 4-13, 8-21
exp(), 4-13, 8-22
fabs(), 4-14, 8-22
fcloseO, 4-14, 8-22
fcvt(), 4-14
fdopen(), 4-14
fdtmO, 4-15
feofO, 4-15, 8-22
ferrorO, 4-15, 8-22
fexists(), 4-15
fflush(), 4-16, 8-23
fgetc(), 4-16, 4-25, 8-23
fgetname(), 4-16, 4-26
fgetpos(), 8-23
fgets(), 4-17, 4-27, 8-23
filenoO, 4-17
floorC), 4-17, 8-24
fmodO, 8-24
fopen(), 4-17, 8-24
fprintf(), 4-19, 4-43, 8-24
fputc(), 4-19, 4-46, 8-26
fputs(), 4-19, 4-47, 8-26
fread(), 4-19, 8-26
freeO, 4-20, 8-27
freopen(), 4-20, 8-27
frexp(), 4-21, 8-27
f rwlock(), 4-21

lndex-7

C User's Guide

fscanfO, 4-22, 4-50, 8-27
fseekC), 4-22, 8-28
fsetpos(), 8-29
fsize(), 4-22
fstatC), 4-23
ftelK), 4-23, 8-29
ftime(), 4-23
ftypeO, 4-24
fwriteO, 4-24, 8-29
g$amiix(), 4-24
getcC), 4-25, 8-29
getcharC), 4-25, 8-30
getenvO, 8-30
gethO, 4-25
getmodC), 4-26
getname(), 4-26
getsC), 4-27, 8-30
getwO, 4-27
gmtime(), 8-31
gterm(), 4-28
gvgetO, 4-28
gvsetO, 4-28
header files required by, 4-3
hypotO, 4-29
indexO, 4-29, 4-59
interpreting definitions, 4-3
isalnumC), 4-29, 8-31
isalphaC), 4-29, 8-31
isasciiC), 4-30
isattyC), 4-30
iscntrlO, 4-30, 8-31
isdigitC), 4-30, 8-31
isgraphC), 4-30, 8-32
islowerC), 4-31, 8-32
ispasciiC), 4-31
isprintC), 4-31, 8-32
ispunctC), 4-31, 8-32
isspaceC), 4-32, 8-32
isupperC), 4-32, 8-33
isxdigitO, 4-32, 8-33
labsC), 8-33
IconvC), 8-33
IdexpO, 4-32, 8-33
IdivO, 8-34
localtime(), 4-32, 8-34
log(), 4-33, 8-34
loglOO, 4-33, 8-34
longjmpO, 4-54, 8-34
longjump(), 4-33
lsdirO, 4-33

lseekO, 4-34
mallocC), 4-34, 8-35
mblenC), 8-35
mbstowcsC), 8-35
mbtowc(), 8-36
memchr(), 8-36
memcmp(), 8-36
memcpy(), 8-36
memmove(), 8-37
memset(), 8-37
mkdirC), 4-35
mktime(), 8-37
modfO, 4-35, 8-37
move(), 4-35
nonstandard, 8-15
open(), 4-36
perrorC), 4-42, 8-37
pow(), 4-42, 8-38
primospath(), 4-43
printfC), 4-43, 8-38
putcC), 4-46, 8-38
putcharC), 4-46, 8-38
puthC), 4-46
putsC), 4-47, 8-39
putwC), 4-46, 4-48
qsortC), 8-39
raiseC), 8-39
randC), 4-48, 8-39
readC), 4-48
reallocC), 4-49, 8-39
removeC), 8-40
renameC), 8-40
returning value type, 4-1, 4-3
rewindC), 4-49, 8-40
rindexC), 4-50, 4-59
scanfC), 4-50, 8-40
seekC), 4-34, 4-53
setbufC), 4-53, 8-41
setjmpC), 4-54, 8-41
setlocaleC), 8-41
setmodC), 4-55
setvbufC), 8-42
signalC), 4-55, 8-42
sin(), 4-57, 8-42
sinfC), 8-42
sinhC), 4-57
sleepC), 4-57
sprintfC), 4-43, 4-57, 8-43
sqrt(), 4-57, 8-43
srandC), 4-48, 4-58, 8-43

lndex-8

INDEX

sscanfC), 4-50, 4-58, 8-43
statC), 4-58
stermC), 4-58
strcatC), 4-59, 8-44
strchrC), 4-59, 8-44
strcmpC), 4-60, 8-44
strcollO, 8-44
strcpyC), 4-60, 8-44
strcspnC), 4-61, 8-45
strerrorC), 8-45
strftimeC), 8-45
strlenC), 4-61, 8-47
strncatC), 4-61, 8-47
strncmpC), 4-60, 4-61, 8-47
strncpyC), 4-60, 4-62, 8-47
stroulO, 8-50
strpbrkC), 4-62, 8-47
strrchrC), 4-59, 4-62, 8-48
strspnC), 4-62, 8-48
strstrC), 8-48
strtodO, 8-48
strtokC), 8-49
strtolO, 8-49
strxfrmC), 8-50
systemC), 4-63, 8-51
tanC), 4-63, 8-51
tanhC), 4-63, 8-51
tellC), 4-63
timeC), 4-64, 8-51
timerC), 4-64
tmpfileC), 8-51
tmpnamC), 4-66,
toasciiC), 4-66
tolowerC), 4-67,
topasciiC), 4-67
toupperC), 4-67, 8-52
ungetcO, 4-68, 8-52
va arg(), 8-53
va_end(), 8-53
va_start(), 8-53
vfprintf(), 8-53
vprintf(), 8-54
vsprintf(), 8-54
wcstombs(), 8-54
wctomb(), 8-55
write(), 4-68
_tolower(), 4-67
_toupper(), 4-67

Limits.h header file, 8-3
Line, reading, 4-27

8-52

8-52

LinkC) library function,
PRIMOS C analogues, 7-17

Linkage area,
placing string constants in, 2-23

Linking C programs, 1-4, 3-1, 3-4, 8-5
#list preprocessor command, A-5
-LISTING compiler option, 2-7, 2-24
Listing,

cross-reference, 2-35
source, 2-7, 2-24, A-5

Loading utilities, 1-4, 3-1
Locale.h header file, 8-3
Localization library functions, D-2
LocaltimeC) library function, 4-32, 8-10,

8-34
Lock, read/write, 4-21
LogC) library function, 4-33, 8-34
LoglOC) library function, 4-33, 8-34
Long double data type, 2-29, A-3
LongjmpC) library function, 4-33, 4-54,

8-34
-LOWENDPROCESSORS compiler option,

2-8, 2-20
Lowercase, 7-7

converting to uppercase, 4-67
testing if a character is, 4-31

LsdirC) library function, 4-33
Lseek() library function, 4-34

M
Macro definition,

quoted strings in, 8-12
single quotation marks in, 7-5

Macro preprocessor, 7-5, 8-11, A-5
Magnetic tape,

assigning, 4-38
assigning, device, 4-37
current hardware status, 4-42
double tape mark, 4-40
I/O, 4-40
multiple tape marks, 4-38
options, 4-39
rewinding, 4-38
unassigning, 4-38
unloading, 4-38

MAIN, subcommand of BIND, 3-6
Malloc() library function, 4-34, 8-35
Mantissa of a double, 4-21, 4-35
MAP, subcommand of BIND, 3-6

lndex-9

C User's Guide

Mapping \n to \n\r, 4-37
Math.h header file, 4-2, 8-3
MATH.H.INS.CC file, 4-2
Mathematics library functions, 1-3, D-3
Mblen() library function, 8-35
Mbstowcs() library function, 8-35
Mbtowc() library function, 8-36
MemchrC) library function, 8-36
Memcmp() library function, 8-36
Memcpy() library function, 2-23, 2-31,

2-32, 8-36
Memmove() library function, 8-37
Memory management library functions,

D-9
Memory,

allocating, 4-9, 4-35
changing size of, 4-49
freeing allocated, 4-20
reallocating, 4-49

Memset() library function, 8-37
MIDASPLUS, 1-4, 5-26
Miscellaneous library functions, D-l3
MkdirC) library function, 4-35
MktimeC) library function, 8-37
Modes,

See 321, 32IX, and 64V modes
ModfO library function, 4-35, 8-37
MoveC) library function, 4-35
Multibyte character and string handling

library functions, D-10
Multiple Index Data Access System,

See MIDASPLUS

N
Name conflicts, 3-2
Natural logarithm, 4-33
-NEWFORTRAN compiler option, 2-8,

2-24, 5-7
No-wait mode, 4-37, 4-41
-NOANSI compiler option, 2-8, 2-12
-NoAnsiLibs command line option, 8-6
-NOBIG compiler option, 2-8, 2-13
-NOBIT8 compiler option, 2-8, 2-14
-NOCHECKOUT compiler option, 2-8,

2-14
-NOCLUSTER compiler option, 2-8, 2-15
-NOCOMPATIBILITY compiler option,

2-8, 2-16
-NOCOPY compiler option, 2-8, 2-16

-NODEBUG compiler option, 2-8
-NOERRTTY compiler option, 2-8, 2-17
-NOEXPLIST compiler option, 2-18, G-3
-NOFRN compiler option, 2-8, 2-19
-NOHARDWAREROUNDING compiler

option, 2-19, 2-8
-NOHOLEYSTRUCTURES compiler option,

2-21, 2-8
-NOIGNOREREGISTER compiler option,

2-21, 2-8
-NOINTEGEREXCEPTIONS compiler

option, 2-22, 2-9
#nolist preprocessor command, A-5
Non-local jumps library functions, D-4
-NOONUNIT compiler option, 2-9, 2-25
-NOOPTIMIZE compiler option, 2-9, 2-25
-NOOPTSTATISTICS compiler option, 2-9,

2-27
-NOPACKBYTES compiler option, 2-9,

2-27
-NOPOP compiler option, 2-9, 2-28
-NOQUADCONSTANTS compiler option,

2-29, G-3
-NOQUADFLOATING compiler option,

2-29, G-3
-NOSAFEPOINTERS compiler option, 2-9,

2-30
-NOSEGMENTSPANCHECKING compiler

option, 2-9, 2-30
-NOSILENT compiler option, 2-9, 2-31
-NOSTATISTICS compiler option, 2-9,

2-33
-NOSTRICTCOMPLIANCE compiler

option, 2-9, 2-33
-NOSYSOPTIONS compiler option, 2-34,

G-3
-NOVERBOSE compiler option, 2-9, 2-35
-NO_STORE_OWNER_FIELD compiler

option, 2-9, 2-33
Null character, 7-1
Null padding, 7-2
Null pointer, 7-3
Numeric, testing if a character is, 4-30
Numerical command line arguments, 3-9,

7-4

-OLDFORTRAN compiler option, 5-7, 2-9,
2-24

Index-10

INDEX

On-unit, G-l
OpenC) library function, 4-36
Operator precedence and associativity, C-l
Optimization, statistics about, 2-27
-OPTIMIZE compiler option, 2-10, 2-25

OPTIMIZE preprocessor symbol, 2-34
Options file, 2-26
Options, compiler,

See Compiler options
-OPTIONSFILE compiler option, 2-10,

2-26
-OPTSTATISTICS compiler option, 2-10,

2-27
Overflow errors, integer, 2-22

-PACKBYTES compiler option, 7-6, 2-10,
2-27

Parameters passed to a function, 7-2
Parity bit, 7-1
-PARTIALDEBUG compiler option, 2-10,

2-28
Pascal, 5-1, 5-6
Pass by reference, 2-16, 5-2, G-2
Pass by value, 2-16, 5-2, 5-8, G-2
Pathname, G-3

getting, 4-27
testing access rights, 4-5
testing existence of, 4-5, 4-16
UNIX, 4-43

-PBSTRING compiler option, 2-10, 2-23
PerrorC) library function, 4-42, 8-37
PL/I, 5-1, 5-6, 5-11

character strings, 5-19
PMA, 1-5

statements in listing file, 2-18
Pointer,

byte offset bit of, 2-30
casting, 7-3
functions returning, 5-7
high bit of, 7-3
in 32IX mode, 5-7
in 64V mode, 5-7
null, 7-3
size, 5-6, 7-3
storage, 7-3
to character, B-5

-POP compiler option, 2-10, 2-28
Portability, 7-1

PowC) library function, 4-42, 8-38
Power,

raising e to a, 4-13
raising number to a, 4-42

-PREPROCESSONLY compiler option,
2-10, 2-29

Preprocessor commands, 1-3, A-4
#assert, A-6
#define, 2-17, 7-5
#display, A-6
#elif, A-4
#endincl, A-6
#include, 2-2, 2-21, A-5
#list, A-5
#nolist, A-5
defined, A-5

Preprocessor symbols,
predefined in 32IX mode, 2-34
undefining, 2-34

50SERIES, 2-34
ANSILIBRARIES, 8-8
CI, 2-34, 5-21
DEBUG, 2-34
OPTIMIZE, 2-34

Prime ASCII, 7-1
converting number to, 4-67

Prime Extended Character Set (Prime
ECS), F-l

in library functions, 4-2
Prime Macro Assembler, 1-5
Prime_ecs_chars.h header file, 4-2
PRIME_ECS_CHARS.H.INS.CC file, 4-2
PRIMIX, 1-2, 4-1
PRIMOS condition mechanism, 4-4, 5-21
PRIMOS file unit, converting filelD to,

4-8
PrimospathC) library function, 4-43
PrintfC) library function, 4-43, 8-38
Procedure area,

placing string constants in, 2-23
Process,

suspending execution, 4-57
testing if running from terminal, 4-30
user ID of, 4-11

-PRODUCTION compiler option, 2-10,
2-29

Promoted data types,
in DBG, B-6

Promotion, of argument types, 5-4
Pseudo-assembly code, in listing file,

2-18

Index-11

C User's Guide

Pseudo-random number, 4-48
Punctuation, testing if a character is,

4-31
PutcC) library function, 4-46, 8-38
PutcharC) library function, 4-46, 8-38
PuthC) library function, 4-46
PutsC) library function, 4-47, 8-39
PutwC) library function, 4-46, 4-48

QsortC) library function, 8-39
-QUADCONSTANTS compiler option,

2-10, 2-29
-QUADFLOATING compiler option, 2-10,

2-29
Quadruple precision floating point, 2-29,

A-3
QUIT, subcommand of BIND, 3-8

RaiseC) library function, 8-39
RandC) library function, 4-48, 8-39
Random number, 4-48
Random sequence generation library

functions, D-7
ReadC) library function, 4-48
Read/write lock, 4-21
ReallocC) library function, 4-49, 8-39
Redefining macros, 8-11
Register keyword, 2-21
RemoveC) library function, 8-40
RenameC) library function, 8-40
RESUME command, 3-8
Return value data types, 7-2
Return, status, 4-13
RewindC) library function, 4-49, 8-40
Rewinding, magnetic tape, 4-38
RindexC) library function, 4-59
Rounding, floating-point, 2-19
Running a program, 3-8
Runtime libraries, 3-2

changing from command line, 8-6

-SAFEPOINTERS compiler option, 2-10,
2-30

SAM files, 4-24
opening, 4-38
segment directory, 4-24
size of, 4-23

ScanfC) library function, 4-50, 8-40
Search rules, include, 2-2
Searching and sorting utilities library

functions, D-10
SeekC) library function, 4-34, 4-53
SEG loader, 1-4, 3-9

examples, 3-10
Segment boundaries, objects that span,

2-13, 2-30, 7-3
-SEGMENTSPANCHECKING compiler

option, 2-10, 2-30, 7-4
SetbufC) library function, 4-53, 8-41
SetjmpC) library function, 4-54, 8-41
Setjmp.h header file, 4-2, 8-3
SETJMP.H.INS.CC file, 4-2
SetlocaleC) library function, 8-41
SetmodC) library function, 4-55
SetvbufC) library function, 8-42
Shared programs, 3-10
-SHORTCALL compiler option, 2-10, 2-31
Shortcalls,

32IX mode, 6-6
64V mode, 6-9

Signal handling library functions, D-4
SignalC) library function, 4-55, 8-42
SignaLh header file, 4-2, 8-3
SIGNAL.H.INS.CC file, 4-2
Significant characters in external

identifier names, 3-3
-SILENT compiler option, 2-10, 2-31
SinC) library function, 4-57, 8-42
SinfC) library function, 8-42
Single precision math, 2-17
Single quotation marks in #define, 7-5
-SINGLEFLOATING compiler option, 2-10,

2-17
SinhC) library function, 4-57
Size of a file, 4-22
SleepC) library function, 4-57
-SOURCE compiler option, 2-11, 2-31
Source level debugger, 1-4, B-l
Source listing, 2-24, A-5
-SPEAK compiler option, 2-11, 2-32
SprintfC) library function, 4-43, 4-57,

8-43
SqrtC) library function, 4-57, 8-43

^N

Index-12

INDEX

r

Square root, 4-57
SrandC) library function, 4-48, 4-58,

8-43
Sscanf() library function, 4-50, 4-58,

8-43
Stack frame format,

32IX mode, 6-1
64V mode, 6-4

Standard error output, 4-40
associate with file, 4-21

Standard error, G-2
Standard input, 4-27, 4-40, G-2

associate with file, 4-21
formatted input from, 4-50

Standard output, 4-40, 4-47, G-2
associate with file, 4-21
write character to, 4-46
write string to, 4-47

-STANDARDINTRINSICS compiler option,
2-11, 2-32

Standardization, 1-2
Star Extent character, B-5
StatC) library function, 4-58
Stat.h header file, 4-2
STAT.H.INS.CC file, 4-2
Statistical compiler data, 2-33
-STATISTICS compiler option, 2-11, 2-33
Status, returning, 4-13
Stdarg.h header file, 8-3

STDC preprocessor macro, 8-3
StddeLh header file, 8-3
Stderr,

See Standard error output
Stdin,

See Standard input
Stdio.h header file, 4-2, 8-3
STDIO.H.INS.CC file, 4-2
Stdlib.h header file, 8-3
Stdout,

See Standard output
StermC) library function, 4-58
-STORE_OWNER_FIELD compiler

option, 2-11, 2-33
StrcatC) library function, 4-59, 8-44
StrchrC) library function, 4-50, 4-59,

8-44
StrcmpC) library function, 2-23, 2-32,

4-60, 8-44
StrcollC) library function, 8-44
StrcpyC) library function, 2-23, 2-32,

4-60, 8-44

StrcspnC) library function, 4-61, 8-45
StrerrorC) library function, 8-45
Strftime() library function, 8-45
-STRICTCOMPLIANCE compiler option,

2-11, 2-33
String constants,

placing in linkage area, 2-23
placing in procedure area, 2-23

String conversion library functions, D-8
String handling library functions, 1-3,

D- l l
String.h header file, 4-2, 8-3
STRING.H.INS.CC file, 4-2
Strings,

comparing, 4-60
concatenating, 4-59
converting double to, 4-12
converting to numeric, 4-7
copying, 4-60
displaying in DBG, B-5
finding character in, 4-59
getting length of, 4-61
putting pathname in, 4-66
reading, 4-27
searching for character, 4-61, 4-62
writing to file, 4-47
writing to standard output, 4-47

StrlenC) library function, 2-23, 2-32,
4-61, 8-47

StrncatC) library function, 4-59, 4-61,
8-47

Strncmp() library function, 4-60, 4-61,
8-47

Strncpy() library function, 2-23, 2-31,
2-32, 4-60, 4-62, 8-47

StroulC) library function, 8-50
StrpbrkC) library function, 4-62, 8-47
Strrchr() library function, 4-59, 4-62,

8-48
Strspn() library function, 4-62, 8-48
StrstrC) library function, 8-48
Strtod() library function, 8-48
Strtok() library function, 8-49
StrtolC) library function, 8-49
Structure members, alignment of, 2-21,

2-27
StrxfrmC) library function, 8-50
SYSCOM directory, 2-1, 4-1, 8-3
-SYSOPTIONS compiler option, 2-11, 2-34
System functions, 1-3

Index-13

C User's Guide

System resources supporting C, 1-4
SystemC) library function, 4-63, 8-51

TanC) library function, 4-63, 8-51
TanhC) library function, 4-63, 8-51
Tape,

See Magnetic tape
TellC) library function, 4-63
Term.h header file, 4-2
TERM.H.INS.CC file, 4-2
Terminal,

assigning, 4-36
getting characteristics, 4-28
setting characteristics, 4-58
testing for input, 4-9
testing if process running from, 4-30

Text files, 7-2
TimeC) library function, 4-64, 8-10, 8-51
Time,

returning as string, 4-11, 8-10
structure, 4-23, 4-33

Time.h header file, 4-2, 8-3
TIME.H.INS.CC file, 4-2
Timeb.h header file, 4-2
TIMEB.H.INS.CC file, 4-2
TimerC) library function, 4-64
TmpfileC) library function, 8-51
TmpnamC) library function, 4-66, 8-52
ToasciiC) library function, 4-66
TolowerC) library function, 4-67, 8-52
TopasciiC) library function, 4-67
ToupperC) library function, 4-67, 8-52
Truncation, when opening, 4-37
TTY device, assigning, 4-36
Type, of a file, 4-24

U

Unary plus operator, A-4
#undef preprocessor command, 8-11
-UNDEFINE compiler option, 2-11, 2-34
Underflow errors, integer, 2-22

UngetcC) library function, 4-68, 8-52
Union members, alignment of, 2-27
UNIX operating system,

compatibility, 1-2, 2-16
UnlinkC) library function,

PRIMOS C analogues, 7-17
Unresolved references,

MAP subcommand of BIND, 3-6
Uppercase, 7-7

converting to lowercase, 4-67
testing if a character is, 4-32

User ID of current process, 4-11

V mode,
See 64V mode

\v symbol, 7-7
-VALUEONLY compiler option, 2-11,

2-34
Variable arguments library functions,

D-4
Va_argC) library function, 8-53
Va_end() library function, 8-53
Va_start() library function, 8-53
-VERBOSE compiler option, 2-11, 2-35
Vertical tab character, 7-7
VfprintfC) library function, 8-53
Void data type, A-2
VprintfC) library function, 8-54
VsprintfC) library function, 8-54

W
Wait mode, 4-41
WcstombsC) library function, 8-54
WctombC) library function, 8-55
White space, testing if a character is,

4-32
WriteC) library function, 4-68

-XREF compiler option, 2-11, 2-35
-XREFS compiler option, 2-35, G-3

Index-14

SURVEYS

READER RESPONSE FORM

C User's Guide
DOC7534-4LA

4

Your feedback will help us continue to improve the quality, accuracy, and organization of
our publications.

1. How do you rate this document for overall usefulness?

D excel lent D very good D good D fa i r D poor
2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer
companies?

D Much better □ Slightly better D About the same
D Much worse D Sl ight ly worse □ Can ' t judge

5. Which other companies' manuals have you read?

N a m e : P o s i t i o n :

Company:
Address:

Postal Code:

First Class Permit »531 Natick. Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime
Attention: Technical Publications
Bidg 10
Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

READER RESPONSE FORM

C User's Guide
DOC7534-4LA

Your feedback will help us continue to improve the quality, accuracy, and organization of
our publications.

1. How do you rate this document for overall usefulness?

D excel lent D very good D good D fa i r D poor
2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer
companies?

D Much better D Slightly better D About the same
D Much worse D Sl ight ly worse D Can' t judge

5. Which other companies' manuals have you read?

N a m e : P o s i t i o n :

Company:
Add ress:

Postal Code:

First Class Permit #531 Natick. Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime
Attention: Technical Publications
Bldg 10
Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY

IF MAILED
IN IHE

UNITED STATES

	Front Cover
	Title Page
	i
	Copyright
	ii
	How To Order Technical Documents
	iii
	Reading Path for PRIMOS Documentation
	iv
	Contents
	v
	vi
	About This Book
	vii
	viii
	Organization of This Book
	ix
	Associated Documents
	x
	Acknowledgements
	Prime Documentation Conventions
	xi
	xii
	Chapter 1
	Overview of PRIMOS C
	1-1
	1-2
	1-3
	1-4
	1-5
	Chapter 2
	Compiling Programs in C
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	Chapter 3
	Linking C Programs
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	Chapter 4
	Using the C Library
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	Chapter 5
	Interfacing to Other Languages
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	Chapter 6
	Advanced Topics
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	Chapter 7
	Portability Considerations
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	Chapter 8
	Using ANSI C
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	8-49
	8-50
	8-51
	8-52
	8-53
	8-54
	8-55
	Appendices
	Appendix A
	Extensions to the C Language
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	Appendix B
	Debugging C Programs
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	Appendix C
	Operator Precedence and Associativity
	C-1
	Appendix D
	Summary of C Library Functions
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	D-7
	D-8
	D-9
	D-10
	D-11
	D-12
	D-13
	Appendix E
	C Data Formats
	E-1
	E-2
	Appendix F
	The Prime Extended Character Set
	F-1
	F-2
	F-3
	F-4
	F-5
	F-6
	F-7
	F-8
	F-9
	F-10
	F-11
	F-12
	F-13
	Glossary
	G-1
	G-2
	Index
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	Index-7
	Index-8
	Index-9
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Surveys
	
	
	
	

